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Abstract

Algorithms play an increasingly important role in economic situations. Of-

ten these situations are strategic, where the artificial intelligence may or

may not be cooperative. We study the determinants and forms of algo-

rithmic cooperation in the infinitely repeated prisoner’s dilemma. We run

a sequence of computational experiments, accompanied by additional re-

peated prisoner’s dilemma games played by humans in the lab. We find

that the same factors that increase human cooperation largely also deter-

mine the cooperation rates of algorithms. However, algorithms tend to play

different strategies than humans. Algorithms cooperate less than humans

when cooperation is very risky or not incentive compatible.
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1 Introduction

Cooperation increases the welfare of humans and other species, but incentivizing

agents to cooperate may be difficult. The prisoner’s dilemma distills the essen-

tial incentives and rewards of such social dilemmas: The Pareto-efficient outcome

is in dominated strategies, so each individual has a strong incentive to free-ride

on the other player. Theoretically, it is well understood that the possibility of

future interaction, or repetition, is essential for establishing cooperation among

self-interested players: Future encounters can be used to incentivize compliance

through the threat of punishment. Indeed, the folk theorems (Friedman, 1971)

prove that cooperation may emerge when the probability of such future encoun-

ters is sufficiently high.1 However, as there are myriad equilibria for sufficiently

high discount factors and uncooperative equilibria persist, it becomes an empir-

ical exercise to study how the repeated prisoner’s dilemma is being played. The

vast experimental literature (see our literature review below) has addressed the

determinants, forms, and levels of cooperation for human players.

We study how self-learning algorithms play the repeated prisoner’s dilemma.

Specifically, we place the algorithms into the same economic environments imple-

mented in laboratory experiments and analyze their behavior with the tools used

to study human behavior (Dal Bó and Fréchette, 2018). As with humans, we are

interested in the determinants, forms, and levels of cooperation. In each of these

dimensions, we draw on the experimental literature to understand the similarities

and differences between self-learning algorithms and humans in social dilemmas.

First, we examine whether the same determinants that shape human cooperation

also influence algorithmic cooperation. Second, we ask which strategies the al-

gorithms adopt and contrast them with those of humans. Finally, we compare

the levels of cooperation between humans and algorithms and ask which factors

contribute to the differences.

Understanding the behavior of self-learning algorithms is essential (Rahwan

et al., 2019). After all, algorithms advise humans or decide on their behalf more

and more often. For example, algorithms may autonomously drive cars, adjust

financial portfolios, detect fraud, or set prices, among other applications. Some

autonomous algorithms operate in strategic situations and interact repeatedly with

other self-learning agents. This can occur in coordination problems; for example,

in choosing traffic routes, or in warfare (Jensen et al., 2020). Other strategic

1The probability of future instances of the stage-game is linked to the discount factor. In
laboratory experiments, the subjects’ discount factor is induced via the probability of continuing
the supergame.
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situations present the AI with the possibility of cooperating in social dilemmas,

where cooperation can be socially efficient, e.g., in team production or computation

offloading (Kuang et al., 2021), or to the detriment of the consumers (Calvano et

al., 2020b, Ezrachi and Stucke, 2020, Harrington, 2018, 2022). Either way, it is

important to understand how algorithms interact with each other and their impact

on society.

As a methodological step forward in this direction, we apply the strategy fre-

quency estimation method (SFEM), developed for the analysis of human data

(Dal Bó and Fréchette, 2011), to the algorithms’ decisions. The behavior of al-

gorithms often appears as a black box, and knowledge of how algorithms work

and how to predict their behavior is important. A key challenge for interpreting

algorithmic behavior is that the number and complexity of the strategies grows in

the algorithm’s complexity. The SFEM works around this issue by estimating the

frequency of each strategy from a pre-specified set of candidate strategies (e.g.,

always defect, tit-for-tat, etc.). The result is a representation of strategies that

is both understandable to humans and comparable to the strategies adopted by

humans. We assess the estimates of the SFEM and find that it performs accu-

rately in our setting. It suggests that the SFEM can also be fruitfully applied to

studying algorithmic behavior in other strategic settings.

Our experimental design is as follows. We analyze how a Q-learning algorithm

plays various repeated prisoner’s dilemma games. Q-learning (Watkins, 1989,

Watkins and Dyan, 1992) is a form of reinforcement learning, widely studied in

economics (Calvano et al., 2020a, Johnson et al., 2023, Klein, 2021), and forms

the basis for more sophisticated algorithms. We have three main treatment vari-

ables. First, adopting the parameters from the experimental literature, we vary

the reward from mutual cooperation across three levels. The discount factor is our

second treatment variable, which we set at four different values that have previ-

ously been studied in the experimental and computational literature.2 Our third

treatment variable is the algorithm’s memory, which is hard-coded in Q-learning.

We consider algorithms with memory one, two, and three. Note that the strate-

gies most frequently played by humans are of memory up to two (Dal Bó and

Fréchette, 2018). Lastly, we study how cooperation depends on the algorithm’s

learning and exploration rate. We do not view these hyperparameters as classic

2The algorithmic simulations usually use a discount rate of 0.95 or higher (Lerer and
Peysakhovich, 2017, Calvano et al., 2020a, Klein, 2021, Johnson et al., 2023). By contrast,
the human lab experiments typically study relatively lower rates. Our research connects both
research areas. We study low discount factors uncommon in the artificial intelligence literature
and high discount rates hitherto not conducted with humans in the lab.
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treatment variables as they lack an economic interpretation. As our objective is

to compare the algorithms’ to human behavior, we run additional laboratory ex-

periments to collect data for parameter constellations that have been unexplored

up to now. These results are of independent interest.

Our first major finding is that the same factors that increase human cooper-

ation largely also determine algorithmic cooperation rates: A higher reward from

cooperation and a higher weight on future payoffs facilitate algorithmic cooper-

ation. The memory of the agent has an ambiguous influence, and we find that

many algorithms do not fully exploit the memory as most learned strategies are

memory one. A robust finding of the experimental literature is that cooperation

is more likely when it can be supported as a (risk-dominant) equilibrium (Dal

Bó and Fréchette, 2018). We confirm that algorithmic cooperation emerges only

if there are cooperative equilibria and that cooperation increases as it becomes

risk-dominant.

A significant difference between humans and algorithms lies in the strategies

they adopt (given parameter combinations for which both humans and algorithms

frequently cooperate). Dal Bó and Fréchette (2018) show that the most frequent

cooperative strategies are tit-for-tat and grim trigger. While our strategy fre-

quency estimation suggests that algorithms also play tit-for-tat, they hardly ever

select grim trigger. Instead, algorithms play win-stay-lose-shift (Nowak and Sig-

mund, 1993), a strategy only rarely played by humans, and a hitherto undocu-

mented strategy that cooperates if and only if both players defected in the last

rounds.

Our third object of interest is the level of cooperation. Here we find no un-

ambiguous answer as to whether algorithms outperform humans. While this is

sometimes the case, we also find that algorithms often cooperate less than hu-

mans. In particular, algorithms never cooperate for low discount factors and

low reward parameters, while humans achieve low but positive cooperation rates.

Hence, humans cooperate significantly more in environments where cooperation is

very risky or not incentive compatible.

In an extension, we repeat the experiments with ChatGPT, a Large Language

Model (LLM), as the players to study the robustness of our findings to the al-

gorithmic class. LLM are not designed to learn optimal behavior in a particular

environment but are trained on vast human-generated data. As such, they are

readily available, and humans increasingly interact with them for various tasks

(see Section 7 for references). The algorithm’s propensity to cooperate is similar

to the one of humans for medium discount rates and reward parameters. No-
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tably, the determinants that shape cooperation among humans and Q-learning

algorithms do not play a significant role for ChatGPT. ChatGPT mainly adopts

strategies with memory up to one and chooses always cooperate, tit-for-tat, grim,

and win-stay-lose-shift.

Related literature. Roth and Murnighan (1978) and Murnighan and Roth

(1983) were the first to implement infinitely repeated prisoner’s dilemma games in

the lab by imposing a random move that determines the end of a supergame. Dal

Bó (2005) first implemented several supergames, each indefinitely repeated. The

meta-study of Dal Bó and Fréchette (2018) summarizes the subsequent literature

on the determinants, forms, and levels of cooperation.3 Throughout the paper, we

draw upon the insights and methods of this literature to form hypotheses about

algorithmic behavior and analyze observed behavior.

Axelrod (1984) provides an early computational study on the performance

of strategies from a fixed set of strategies in the infinitely repeated prisoner’s

dilemma. In contrast, we use Q-learning to determine the strategies. The eco-

nomics literature on self-learning algorithms has so far largely focused on cooper-

ation in the sense of (socially undesirable) anti-competitive collusion in oligopoly

games.4 Following an early study by Waltman and Kaymak (2008), Calvano et al.

(2020a) and Klein (2021) show in simulation studies that Q-learning algorithms

often learn to play collusive prices on-path and that average prices drop after a

deviation and gradually increase again. However, it is difficult to describe the

algorithms’ strategies due to the relatively complex stage games, let alone how

the distribution of strategies depends on the game parameters. In contrast, we

analyze the repeated prisoner’s dilemma (which can be seen as a pricing game with

two-stage game actions), which allows us to get a more complete understanding

of on-path and off-path behavior of Q-learning agents. In particular, we use the

strategy frequency estimation method (Dal Bó and Fréchette, 2011) to study the

strategies algorithms adopt and how these strategies depend on the game param-

eters. Moreover, our setting allows us to draw upon a rich set of experimental

3Embrey et al. (2018) provide a similar analysis for finitely repeated games, as does Mengel
(2018) for one-shot and finitely-repeated prisoner’s dilemmas. Bigoni et al. (2015) compare
repeated prisoner’s dilemma games in continuous time with indefinite duration to those with
finite length.

4There is also a literature that studies pricing algorithms in the field. Chen et al. (2016)
provide an early empirical analysis of algorithmic pricing on Amazon Marketplace. Assad et
al. (2023) analyze the impact of algorithms in the German retail gasoline market. Brown and
MacKay (2023) show that pricing algorithms have important effects in the allergy medications
industry. Finally, Wieting and Sapi (2021) analyze algorithmic pricing with data from the online
marketplace Bol.com.
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studies to compare human with algorithmic behavior.

In simultaneous and independent work, Schaefer (2022) and Boczoń et al.

(2023) also inquire into the determinants of cooperation among Q-learning algo-

rithms in the repeated prisoner’s dilemma. Schaefer (2022) calibrates a heuris-

tic measure called the “kinetic log ratio” to explain the cooperation propensity.

Boczoń et al. (2023) test equilibrium selection focusing on the size of the basin

of attraction of always defect and the effect of strategic uncertainty by vary-

ing the number of players in prisoner’s dilemma experiments using humans. In

an extension, they compare these findings with those of Q-learning agents. We

systematically investigate the determinants of cooperation proposed by the ex-

perimental literature and also study the algorithm’s memory as a determinant

for cooperation. Banchio and Mantegazza (2022) provide theoretical insights into

why independent Q-learning agents often learn symmetric strategies. Dolgopolov

(2021) shows that Q-learning players may cooperate even with zero memory in the

repeated prisoner’s dilemma. Barfuss and Meylahn (2022) focus on the relevance

of noise in sustaining cooperative outcomes for reinforcement learning algorithms.

The computer science literature also studies artificial intelligence in strate-

gic situations (Dafoe et al., 2020). The focus is often on designing algorithms

that achieve “better performance” than previous algorithms and on the techni-

cal mechanisms that are responsible for the algorithm’s success in a broad set of

games (Crandall and Goodrich, 2011, Lerer and Peysakhovich, 2017, Crandall et

al., 2018). Other studies explore cooperation between algorithms in more complex,

video-game-like settings going beyond classical game theoretical models (Hughes

et al., 2018, Agapiou et al., 2022). Instead of designing algorithms that perform

well in various environments, we analyze a fundamental reinforcement learning

algorithm that has been studied elsewhere in economics. Our focus is on how

methods from game theory and experimental economics can be used to describe

algorithmic behavior.

Related to our paper are the experiments on the interaction of humans and

algorithms (Crandall et al., 2018). Normann and Sternberg (2023) analyze a

prisoner’s dilemma experiment with three players where one of the players may

or may not be a pre-programmed algorithm. In a market environment, Werner

(2022) conducts lab experiments in which humans either play with other humans

or against self-learned pricing algorithms. He finds that algorithms can be more

collusive than humans.
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Table 1: Stage game payoffs

(a) Normalized payoffs

C D
C 1, 1 −ℓ, 1 + g
D 1 + g, −ℓ 0, 0

(b) Payoffs in the experiment

C D
C R,R 12, 50
D 50, 12 25, 25

2 Economic environment and hypotheses

2.1 Basic setup

We study the infinitely repeated Prisoner’s Dilemma (PD) with perfect monitor-

ing. There are two players who repeatedly play the stage-game PD and discount

future payoffs with the common discount factor δ. In the stage game, each player

either cooperates (C) or defects (D). Hence, the set of stage-game actions is

{C,D} for each player. Table 1 shows two payoff matrices of the stage game:

the normalized payoffs and the payoffs we implement in our experiments.5 We

develop the theoretical predictions with normalized payoffs where mutual cooper-

ation leads to a payoff of 1 and mutual defection to a payoff of 0. In Table 1, g

then stands for the payoff the player gains when defecting (instead of cooperating)

while the other player cooperates, and −ℓ represents the payoff loss when cooper-

ating (instead of defecting) while the other player defects. Naturally, both g and

ℓ are positive. In our experiments, we implement the payoffs in Table 1b and vary

the reward parameter R from mutual cooperation. The Prisoner’s Dilemma arises

when D is strictly dominant, (D,D) the unique stage-game Nash equilibrium, and

(C,C) Pareto-efficient. We consider reward parameters that satisfy 31 < R < 50,

which also imply that mutual cooperation is Pareto-efficient in the repeated game.

We restrict attention to strategies of the infinitely repeated PD that have

finite memory. This stands in contrast to the theoretical textbook treatment of

repeated games with perfect monitoring, where players can condition their actions

on the entire history of past play. However, as arbitrarily long histories require

unbounded memory, such strategies cannot be implemented by finite algorithms in

general and Q-learning in particular. Thus, we consider Markov strategies where

the states are the action profiles of the past k rounds; k ∈ N is each player’s

memory. For example, a memory-one strategy specifies behavior for the four

states CC, CD, DC, and DD. Throughout, we use the first letter to indicate

player 1’s action in a specific state, e.g., player 1 played C, and player 2 played

5See Dal Bó and Fréchette (2018) for how to obtain the normalized payoffs.
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D in the previous round in the state CD. With memory one and two actions,

16 (pure) strategies are possible, if one ignores the initial state (see Table S.1).

For the analysis of laboratory experiments, Fudenberg et al. (2012) suggest 20

plausible strategies, which are at most memory three. The results in Dal Bó and

Fréchette (2019) imply that participants only use a few strategies, and these are

up to memory two. Thus, the restriction to low levels of memory does not seem

overly restrictive in comparison to human actors.

The following low-memory strategies are particularly relevant in our context.6

The first is ‘always defect’ (AllD), which prescribes playing D, the strictly dom-

inant action in the stage game, in any state. Both players playing AllD is for

any discount factor δ a subgame perfect Nash equilibrium (SPNE) of the repeated

PD. A similar strategy, ‘always cooperate’ (AllC), prescribes to play C for any

behavior of the previous round but is never a SPNE. These strategies do not show

any reward and punishment behavior and can be implemented with zero memory.

In contrast to AllC and AllD, Tit-For-Tat (TFT) is reciprocal and cooperative:

TFT begins with C in period one and mimics the rival’s action subsequently. The

minimal memory to implement TFT is one. TFT is generically not subgame per-

fect in the repeated game. A strategy with punishment that potentially forms a

SPNE is ‘grim trigger’ (GT): A player starts by cooperating, but defects when-

ever any player has deviated in the previous round.7 More forgiving than GT is

the strategy ‘win-stay, lose-shift’ (WSLS) (Nowak and Sigmund, 1993). A player

following WSLS cooperates if and only if both players chose the same action in

the previous round, which makes it a memory-one strategy. WSLS is subgame

perfect and, unlike TFT and GT, can correct erroneous defections.

We also consider memory-k, k > 1, strategies: A trigger strategy with two

periods of punishment (T2), for example. There are also versions of TFT and

WSLS with memory two, such as TF2T (play C unless the rival played D in

either of the last two periods) or WSLS with two rounds of punishment. Similar

extensions for memory three are possible (T3 or TF3T, say).

2.2 The self-learning algorithm

We study how Q-learning algorithms play the repeated Prisoner’s Dilemma in a

sequence of computational experiments that are described below. Q-learning is a

popular reinforcement learning algorithm designed to solve Markov decision pro-

6Generally, when we say that a strategy has a certain memory, we mean the minimal memory
needed to implement the strategy.

7Note that our definition of GT requires a minimal memory of only the previous round.
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cesses (Watkins, 1989, Watkins and Dyan, 1992). We focus on this algorithm as its

ideas are at the core of more advanced (deep) reinforcement learning algorithms

that outperform humans at the board game of Go or Atari Video games (Mnih

et al., 2013, Silver et al., 2016). Hence, Q-learning is an algorithm that has par-

ticular real-world relevance. Furthermore, Q-learning has the advantage of being

tractable, and its results are at least partially interpretable, as we can directly

observe the resulting strategies. Moreover, recent work by Calvano et al. (2020a)

and Klein (2021) has shown the potential of Q-learning algorithms in strategic

economic situations.

For ease of exposition, we now describe Q-learning for memory-one strategies

and relegate more details on Q-learning to the online appendix. The decision-

making process of a Q-learning player is represented by a Q-matrix. The dimension

of this Q-matrix depends on the player’s memory, i.e., how many past periods the

player considers for the decision in the given period and the number of possible

actions. For strategies with memory one, the Q-matrix has four rows (one row

for each state) and two columns (one for each action). The entries Q(s, a) of

the Q-matrix are the current approximations of the expected discounted utilities

when choosing action a in state s. The players use their respective Q-matrices

to choose actions and update their approximations of the long-run payoffs. For a

given Q-matrix, the optimal strategy is just the row-wise maximizer.

Q-learning starts with some initial Q-matrix. At time t in state s, player i

chooses the optimal (“greedy”) action with probability 1− εt; the player exploits

their knowledge as encoded in the Q-matrix. With complementary probability,

the player explores other, possibly suboptimal, actions and chooses an action

uniformly at random. This form of random exploration aims at balancing a trade-

off for the algorithm. On the one hand, the player wants to exploit the knowledge

it already has in form of the Q-matrix. On the other hand, the player has to

explore the state space to improve the approximation of the profitability of other

state-action combinations.

Irrespective of whether the action a was chosen through exploitation or explo-

ration, the player obtains feedback through the stage-game payoff π(s, a), where

π(s, a) ∈ {0, 1,−ℓ, 1 + g}, which is naturally dependent on the player’s action a

and the other player’s action. The player uses the payoff feedback in round t to

update the guess of the long-run payoff of choosing action a in state s according

to

Qt+1(s, a) = (1− α)Qt(s, a) + α

(
π(s, a) + δ max

a′∈{C,D}
Qt(s

′, a′)

)
.
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The new value is a convex combination of the old and the actual stage-game payoff

π plus the best possible guessed long-run payoff in the next state. The weight put

on the latter payoff is denoted by α and referred to as the learning rate. The next

state is given by the players’ chosen actions in period t. Note that each player

updates only a single cell at each point in time.

Besides the learning rate α, a key parameter is the exploration probability

εt. Following common practices in the literature (e.g., Calvano et al., 2020a), we

choose ε to decay over time; specifically, εt = e−βt, where β > 0. Note that the

updating procedure in Q-learning also crucially depends on the discount factor δ,

which we vary across treatments. While δ is given by the environment that the

algorithm is acting in, α and β are “hyperparameters”. They are not learned by

the algorithm and not optimized over, but exogenously given by the researcher.

Another important parameter is ν, which is implied by α, β, and k, and denotes

the expected number of times a cell in the Q-matrix is being explored purely by

randomness, disregarding optimality (Calvano et al., 2020a). The interest in this

parameter stems from the fact that for a fixed β, the probability that a cell is

visited by chance through exploration is smaller in larger state spaces (and hence

for higher memory k). In our experiment, we keep ν constant across k to at least

partially control for this interaction. The online appendix contains the formula of

ν. We discuss our Q-learning implementation in Section 3.2.

2.3 Experimental insights and our hypotheses

We draw upon the experimental literature to form our hypotheses about the de-

terminants and forms of algorithmic cooperating. Starting with the determinants,

the experimental literature has identified several factors that shape human co-

operation (Dal Bó and Fréchette, 2018, Embrey et al., 2018, Mengel, 2018). We

consider the following four factors where we conjecture that these are also relevant

for algorithmic cooperation.8

The experimental literature has shown that cooperation among humans can

be expected to increase in the discount factor and the reward parameter (Dal

Bó and Fréchette, 2018). A higher discount factor δ increases the probability of

future interactions and makes cooperation more attractive compared to short-run

8There are also other factors that influence human cooperation rates. For example, in lab
experiments, an important determinant of average cooperation is the level of cooperation in pe-
riod one (Breitmoser, 2015, Dal Bó and Fréchette, 2018). Whereas this allows for a parsimonious
restriction of the analysis to the first period, there is no comparable counterpart in self-learning
algorithms.
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gains from defection. A larger reward payoff generally makes cooperation more

attractive. Our first hypothesis relates to these determinants of cooperation.

Hypothesis 1. The cooperation rate among self-learning algorithms increases in

R and δ.

Second, cooperation rates tend to be higher in experiments with humans when

cooperation can be supported in a SPNE (Dal Bó and Fréchette, 2011, 2018).

The condition is formalized through a binary variable that takes the value 1 when

the payoff parameters (δ, g, ℓ) are such that GT forms a SPNE equilibrium and 0

otherwise. Formally (GT, GT) is a SPNE if

1 + δ + δ2 + δ3 + . . . ≥ 1 + g + δ · 0 + δ2 · 0 + δ3 · 0 + . . .

δ ≥ g

1 + g
≡ δSPNE,

that is, if the discount factor is above the critical value δSPNE. The mere fact

that cooperation is part of an equilibrium does not guarantee cooperation in lab

experiments; the discount factor being sufficiently large is more of a necessary

condition for cooperation than a sufficient one (Dal Bó and Fréchette, 2018). We

conjecture that this also holds for algorithms.

Hypothesis 2. A necessary but not sufficient condition for self-learning algo-

rithms with k > 0 to cooperate is that grim trigger forms a SPNE.

Hypothesis 2 does not claim that Q-learning results in strategies that are always

subgame perfect. Moreover, we know that Q-learning can lead to cooperative

outcomes even in the absence of memory (Asker et al., 2023, Dolgopolov, 2021,

Banchio and Mantegazza, 2022), so subgame perfection cannot play a role in that

case. We hypothesize that a necessary condition for cooperation to emerge with

k > 0 is that the discount factor is high enough for the grim trigger strategy to

be subgame perfect.

The third determinant of cooperation in lab experiments is the size of the basin

of attraction of always defect, “sizeBAD” (Dal Bó and Fréchette, 2011, 2018). To

define the basin of attraction, consider a hypothetical coordination game in which

the players choose between the repeated-game strategies GT and AllD. In this

game, the players believe that the opponent plays GT with probability p and

AllD with probability 1 − p. The basin of attraction of AllD is then defined as

the maximum p that makes it still optimal for a player to play AllD. We use p

to denote sizeBAD. To find the formula for p, compare the expected payoff from

11



playing GT

p · 1

1− δ
+ (1− p) · (−ℓ),

to the expected payoff from AllD

p · (1 + g) + (1− p) · 0.

The expected payoff from selecting GT is (weakly) larger than that of the AllD

strategy if and only if

p ≥ (1− δ)ℓ

1− (1− δ)(1 + g − ℓ)
≡ p; (1)

if GT does not form a SPNE, set p equal to 1. Dal Bó and Fréchette (2011)

interpret sizeBAD as a measure for how robust cooperation is to strategic un-

certainty. Dal Bó and Fréchette (2018) find that cooperation rates decrease in p

across experiments. We hypothesize that self-learning algorithms also cooperate

more when cooperation is more robust to strategic uncertainty.

Hypothesis 3. Algorithmic cooperation decreases in sizeBAD.

A related fourth determinant of cooperation is Risk Dominance (Blonski et

al., 2011, Blonski and Spagnolo, 2015). Specifically, cooperation is found to be

higher in the infinitely repeated PD if in the hypothetical coordination game

consisting of AllD and GT, the cooperative strategy GT is risk dominant (RD).

GT is risk dominant if the discount factor is sufficiently high. To find the minimum

discount factor for risk dominance, assume that both strategies are equally likely

and substitute p = 1/2 in Equation 1 (Harsanyi and Selten, 1988). This leads to

the critical discount factor

δ ≥ g + ℓ

1 + g + ℓ
≡ δRD,

as in Blonski et al. (2011, Proposition 2, page 175). We expect that risk dominance

also plays a role for the cooperation rates of self-learning algorithms.

Hypothesis 4. Algorithmic cooperation is higher when cooperation is risk domi-

nant, i.e., when δ ≥ δRD.

There are also hypotheses that relate to the specific Q-learning algorithms and

that have no human counterpart. Based on Calvano et al. (2020a, Figure 1), we

conjecture that cooperation decreases in α and β. As ν decreases in β, we expect

cooperation to increase in ν.
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Hypothesis 5. The level of cooperation among self-learning algorithms decreases

in α and increases in ν.

In contrast to humans, memory is hard-coded in Q-learning algorithms. The

effect of memory on cooperation is ex ante unclear. On the one hand, cooperation

can increase in memory as higher memory allows more sophisticated punishment

strategies. For example, it may be that a single period of punishment, as in

WSLS, may not deter deviations while two periods of punishment do. On the

other hand, cooperation may decrease in memory due to the increased state space

and potentially longer cycles. The possibility of longer cycles may come with fewer

rounds in which players cooperate.

Exploratory Question 1. Does cooperation among self-learning algorithms in-

crease or decrease in memory?

The next question relates to the forms of cooperation. How do algorithms

cooperate on path and how do they punish deviations off path? In laboratory

experiments, humans mostly play the strategies always defect, tit-for-tat and grim

trigger (Dal Bó and Fréchette, 2011, Fudenberg et al., 2012, Bigoni et al., 2015).

Exploratory Question 2. Which strategies do algorithms learn? How do the

strategies depend on the game parameters (δ and R), on the learning parameters

α and ν, and on memory k?

The final question relates to the levels of cooperation. Humans are able to

sustain cooperation in lab experiments (Dal Bó and Fréchette, 2018) and self-

learning algorithms learn to cooperate (collude) in pricing games (Calvano et al.,

2020a). It is thus natural to compare the levels of cooperation.

Exploratory Question 3. When are algorithms more or less cooperative than

humans?

3 The Experiments

We now describe our treatment variables, the numerical implementation of the

self-learning algorithm, and the human-subject experiments.

3.1 Treatment design

There are two main motivations for our experimental design. On the one hand, we

want to find the determinants, forms, and levels of algorithmic cooperation. On
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the other hand, we wish to compare these to the human counterparts. Hence, we

chose parameters for which some experimental data was available and conducted

additional experiments with human subjects ourselves.

Table 2: Experiments

R = 32 R = 40 R = 48

δ = 0.50 No criterion met GT GT, RD
p = 1.000 p = 0.722 p = 0.383

δ = 0.75 GT GT, RD GT, RD
p = 0.813 p = 0.271 p = 0.163

δ = 0.90 GT, RD GT, RD GT, RD
p = 0.224 p = 0.094 p = 0.060

δ = 0.95 GT, RD GT, RD GT, RD
p = 0.102 p = 0.045 p = 0.029

We study a 3×4×3 design. Following Dal Bó and Fréchette (2011), the varia-

tion in the first two dimensions are the reward payoff of joint cooperation, R, and

the discount factor δ. In the third dimension, we study the hard-coded variation

in memory, k ∈ {1, 2, 3} (this, of course, applies to the algorithmic experiments

only). Specifically, we consider R ∈ {32, 40, 48} and δ ∈ {0.50, 0.75, 0.90, 0.95},
motivated by configurations also used in Ghidoni and Suetens (2022), Kartal and

Müller (2021) and Romero and Rosokha (2018). The variants with δ = 0.95 are

particularly relevant to compare with the parametrization used in Calvano et al.

(2020a), Klein (2021), and other studies using algorithmic simulations. In human

experiments, a discount factor of δ = 0.95 (and indeed δ = 0.9) has only been

studied for R = 32, see Table S.2 in the online appendix. By adding the variants

R = 40 and R = 48 with the discount factors δ = 0.9 and δ = 0.95, our study

adds to the literature on human cooperation independently from the algorithmic

simulations.

Table 2 summarizes the first two dimensions of our treatments and provides

the theoretical predictions. The table entry for each variant shows whether GT

can be supported as SPNE, and whether the specification satisfies the Risk Dom-

inance (RD) criterion. For GT, the thresholds for δ are 0.72, 0.40 and 0.08 for

R = 32, 40, and 48, respectively. For RD, the thresholds δRD are 0.82, 0.61 and

0.39 for R = 32, 40, and 48, respectively. As seen above, these are potentially im-

portant determinants of cooperation. The table also reports the size of the basin

of attraction of AllD.
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3.2 The algorithmic Q-learning experiments

In our AI-based experiment, we distinguish for each run (parameterization) the

training stage and the playing stage. In the training stage, two Q-learning al-

gorithms repeatedly play the stage game in Table 1 and adjust their strategies

according to the common discount factor δ, the learning rate α, and the explo-

ration parameter β. The algorithms explore non-greedy actions with exogenous

probability, where the probability decreases exponentially in time and according

to the parameter β. The training ends when neither algorithm changes the policy

in any state for 109 rounds.9 In the subsequent playing stage, the algorithms’

initial actions are the optimal actions in the round of convergence. After that,

they play according to the learned strategies.

Following our experimental design, the hard-coded memory is at most three.10

To account for the fact that a smaller β is needed to explore the state space

sufficiently often in larger state spaces, we choose β as a function of memory. In

particular, we choose β(k) to keep ν constant for all k.

In our main specification, we let α = 0.15, and we compute β(k) such that we

have ν = 20 for each k.11 We explore the robustness of our results with respect to

α (i.e., α ∈ {0.05, 0.1, 0.15, 0.2, 0.25}) and ν (i.e., ν ∈ {4, 20, 100, 450, 1000}). For
each parametrization, we repeat 1000 runs with a different random seed. Through-

out all simulations, we use a random draw from the unit interval as the initial

values of the Q-matrix.

3.3 The human lab experiments

The experiments involving human participants were run as standard lab exper-

iments. The experimental design was identical to Dal Bó and Fréchette (2011),

Romero and Rosokha (2018), Ghidoni and Suetens (2022), and Kartal and Müller

9The necessity for such a tight convergence criterion arises in the context of k = 3 and
ν = 1000, which features a large state space and substantial initial exploration that slows
convergence times. In order to allow comparability across parametrizations, we use the same
convergence criterion throughout.

10Amemory length of up to k = 3 improves upon the existing economics literature. We cannot
accommodate even higher memory due to the exponentially growing state space. Hettich (2021)
demonstrates that algorithms using function approximation techniques like neural networks to
represent the Q-matrix produce comparable outcomes to Calvano et al. (2020a). See Dawid et
al. (2023) for the role of “experience replay” in deep Q-learning. Anyhow, given the simplicity of
the action and state space in our environment, employing a tabular Q-learning algorithm with
expanded memory is likely to cover most algorithmic behaviors.

11For comparison, Calvano et al. (2020a) focus on memory one and consider several values
for β such that the implied ν is in [4, 450]. However, most of their analysis focuses on the case
where ν ≈ 20, which will also be our main specification.
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(2021). The instructions were likewise identical to these experiments. In order

to compare algorithmic cooperation with humans for each treatment cell, we con-

duct the treatments R = 40 and R = 48 with the discount factors δ = 0.9 and

δ = 0.95 as lab experiments, which have not yet been studied in the lab. For the

other treatments in Table 2, ample lab data exist already (see S.2 in the online

appendix for a complete list of experimental data from other studies that we use

in this paper).

The experiments took place at the DICElab of the University of Duesseldorf

and the PLEx at the University of Potsdam between December 2022 and May

2023. Subjects were recruited from the lab’s subject pool using hroot (Bock et al.,

2014). Upon arrival at the lab, participants randomly drew a token, assigning them

a cubicle number. Printed instructions were distributed and summarized verbally.

Participants were also given the opportunity to ask questions individually and

privately. We ensured complete anonymity.

Subjects played several supergames. We aimed at a maximum of 15 supergames

in each session unless the (pre-announced) time limit of two hours was exceeded.

In that case, the supergame that was started before the two hours were up would

be the final supergame. The matching was fixed within a supergame, but random

when a new supergame started. Sessions were conducted with twenty or thirty

participants. The random matching across supergames was done within groups of

ten subjects.

We pre-registered the human experiments and the hypotheses pertinent to

human behavior at https://osf.io/zcv6x/. We had a total of 240 participants.

Participants earned 22.54 euros on average.

4 Determinants of cooperation

We now discuss the cooperation rates of the algorithms and their determinants.

Figure 1 shows the average cooperation rate of the algorithms for each δ–R treat-

ment, averaged over all k. As expected, cooperation increases monotonically and

substantially in both δ and R, with one exception: For R = 48, the shift from

δ = 0.9 to δ = 0.95 leads to a decrease in cooperation. We will return to this

point when we examine learned strategies. Cooperation is far from dominant, let

alone perfect: Even for high realizations of the δ–R parameters, cooperation rates

do not exceed 60%. Despite the non-monotonicity in δ for high values of R, we

take the following result from Figure 1, which is consistent with Hypothesis 1.
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Figure 1: Cooperation rates of algorithms by δ–R treatment.
Note: The figure reports the cooperation rates averaged across all k for the baseline
parameters α = 0.15, ν = 20. The numerical values are available in Table 8 in the
appendix.

Result 1. The cooperation rate among self-learning algorithms increases in R and

δ on average.

To investigate the role of memory and the other parameters on cooperation,

we run several regressions with the cooperation rate (as depicted in Figure 1) for

our baseline parameterization (α = 0.15, ν = 20) as the dependent variable. The

regressors are the variables used to explain human cooperation rates, and where

we hypothesize that they also shape algorithmic cooperation rates.

Table 3 summarizes the analysis of the determinants of algorithmic cooper-

ation. Focusing on regression (1), the regression confirms the descriptive results

above. We see a substantial and highly significant effect of δ and R. The regression

also includes memory as a control. The average effect of k is negatively signifi-

cant. Table 8 in the appendix further distinguishes the cooperation rates by k.

There we see that the memory length has an ambiguous influence on cooperation

in general. Cooperation rates at k = 1 often seem higher than those for k = 2 and

k = 3, but this is not the case throughout. In any case, memory k appears to be

a second-order factor. Its effect on cooperation is dominated by the impact of δ

and R. Finally, we note that the unexpected drop of cooperation for R = 48 and

when moving from δ = 0.9 to δ = 0.95 is indeed visible for all k ∈ {1, 2, 3}. We

answer the Exploratory Question 1 as follows.
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Table 3: Determinants of average cooperation, α = 0.15, ν = 20

(1) (2) (3) (4)
δ 94.76∗∗∗

(0.77)
R 1.49∗∗∗

(0.02)
k = 2 −3.10∗∗∗ −3.10∗∗∗ −3.10∗∗∗ −3.10∗∗∗

(0.33) (0.38) (0.35) (0.33)
k = 3 −6.88∗∗∗ −6.88∗∗∗ −6.88∗∗∗ −6.88∗∗∗

(0.33) (0.38) (0.35) (0.33)
GT 10.47∗∗∗

(0.61)
RD 20.91∗∗∗

(0.34)
p −52.35∗∗∗

(0.45)
δ − δRD 76.07∗∗∗

(0.56)
Constant −108.01∗∗∗ 3.33∗∗∗ 42.15∗∗∗ 12.21∗∗∗

(1.04) (0.59) (0.29) (0.25)
N 36000 36000 36000 36000

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Result 2. The effect of memory on cooperation of self-learning algorithms is am-

biguous in general and negative on average.

We now ask how cooperation rates are affected when cooperative equilibria

exist. Recall that we formalize this test using a binary variable that takes the

value of one if the discount factor δ exceeds δSPNE, and a value of zero otherwise.

Table 2 shows for which treatments this condition is met. Going back to the

average cooperation rates in Figure 1, we note three points regarding δSPNE. First,

there is no cooperation in treatment (δ = 0.5, R = 32) where GT is not a SPNE.

Second, in all treatments with significant levels of cooperation, GT does form a

SPNE. Third, the fact that GT is an equilibrium is not sufficient for cooperation.

Indeed, for δ = 0.5 and R = 40 there is virtually no cooperation, and there is very

little cooperation in (δ = 0.5, R = 48) and (δ = 0.75, R = 32). This is despite GT

being an equilibrium in these cases. We conclude with the following statement,

which also applies to how humans play the repeated prisoner’s dilemma.

Result 3. A necessary but not sufficient condition for self-learning algorithms to

cooperate is that grim trigger forms a SPNE.

The next potential determinant of cooperation is risk dominance (Blonski et

al., 2011, Blonski and Spagnolo, 2015). We expect cooperation to be higher when
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δ ≥ δRD. For example, Table 2 shows that for δ = 0.5, GT is risk dominant only

when R = 48. Looking at Figure 1 and δ = 0.5, while cooperation does indeed

increase as R increases from 40 to 48, the gain in cooperation is very modest

(from 0 to 2.75%). Nevertheless, Figure 1 suggests a positive influence of the RD

criterion on cooperation.

To systematically examine the influence of RD and GT on cooperation, we

drop δ and R as regressors and instead analyze whether a treatment satisfied the

condition for GT or RD in regression (2) of Table 3. We find that cooperation is

indeed higher when there are cooperative equilibria and, in addition, the equilib-

rium is risk dominant. We take this as evidence in favor of Hypothesis 4, where

an analogous statement also holds for human players. In regression (4) in Table 3,

we also find that cooperation increases in δ − δRD, which is an intuitive measure

of how risk dominant cooperation is.

Result 4. Algorithms cooperate more on average when cooperation is risk domi-

nant.

The final determinant of cooperation that is motivated by human cooperation

is the size of the basin of attraction of always defect. A smaller basin of attraction

can be interpreted in the sense that cooperative strategies are more robust to the

uncertainty surrounding the other player’s strategy (Dal Bó and Fréchette, 2011).

We investigate the role of p in regression (3) in Table 3. The sign of the estimated

coefficient is negative, as expected by Hypothesis 3.

Result 5. Algorithmic cooperation decreases in sizeBAD.

In addition to the factors that determine human cooperation, we expect the

learning parameters to affect the cooperation rates of the algorithms. In the rest of

this section, we examine all data, not just the baseline parameters with α = 0.15

and ν = 20. We analyze the role of the learning parameters in Table 4, where we

report the same set of regressions as in Table 3 but now for all data and with the

additional controls α and ν.

Across all parameter specifications, the effect of α is negative and highly sig-

nificant, whereas the effect of ν is positive and significant. This provides evidence

for Hypothesis 5. While the average cooperation decreases in α and increases in ν,

the impact of these learning parameters is ambiguous for given game parameters.

For example, with memory one, δ = 0.90 and R = 40, average cooperation is

around 40% for ν = 20 but only around 20% for ν = 1000. For ν = 20, and the

same δ–R pair, average cooperation drops to around 16% as α is decreased from

0.15 to 0.05. Thus, there is no clear support for Hypothesis 5.
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Result 6. Average cooperation across all δ-R-k parameters decreases in α and

increases in ν. For a given game, the impact of α and ν is ambiguous.

Looking at the entire data and controlling for α and ν does not change most

of the previous insights. Cooperation still increases in R and δ, is higher when

GT is a SPNE, and risk dominance and sizeBad have the expected influence on

cooperation. The only exception is the influence of memory on cooperation. Here

for the general set of α and ν, the average effect of k is positive significant.

Table 4: Determinants of average cooperation, all (α, ν)

(1) (2) (3) (4)
δ 96.40∗∗∗

(0.17)
R 1.95∗∗∗

(0.00)
k = 2 1.16∗∗∗ 1.16∗∗∗ 1.16∗∗∗ 1.16∗∗∗

(0.07) (0.09) (0.08) (0.08)
k = 3 0.24∗∗ 0.24∗∗ 0.24∗∗ 0.24∗∗

(0.07) (0.09) (0.08) (0.08)
α −8.38∗∗∗ −8.38∗∗∗ −8.38∗∗∗ −8.38∗∗∗

(0.43) (0.49) (0.47) (0.43)
ν 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00)
GT 4.58∗∗∗

(0.13)
RD 27.46∗∗∗

(0.08)
p −51.96∗∗∗

(0.10)
δ − δRD 85.48∗∗∗

(0.13)
Constant −135.29∗∗∗ −2.73∗∗∗ 34.38∗∗∗ 2.97∗∗∗

(0.25) (0.15) (0.10) (0.09)
N 900000 900000 900000 900000

Standard errors in parentheses, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

We conclude this section by noting that the same determinants influence human

and algorithmic cooperation rates. In the next section, we delve deeper into how

algorithms learn to play the repeated prisoner’s dilemma.

5 Forms of cooperation

We now analyze the strategies that the algorithms learn to play. These strategies

tell us how the algorithms cooperate and how cooperation is sustained through

punishment. One advantage of Q-learning is that the algorithm’s strategy can be

20



inferred directly from the Q-matrix. While this is true in principle, the complexity

of the state space and hence the set of all memory-k strategies grows exponentially

in k. Analyzing and classifying the strategies becomes a daunting task as the

number of strategies that differ only in inessential off-path states grows in k.

We circumvent the complexity problem by estimating the proportions of the

strategies from a fixed set of potential strategies. Specifically, we use the state-of-

the-art strategy frequency estimation method (SFEM). We introduce the method

in Section 5.1, where we also explain how we apply it in our setting. In Section 5.2,

we discuss the estimation results and the strategies that algorithms learn. Finally,

in Section 5.3, we use SFEM to estimate the strategies of humans and examine how

algorithmic and human strategies differ for the various environments we consider.

5.1 Estimating the strategies

We use the Strategy Frequency Estimation Method (SFEM) to estimate the dis-

tribution of the limit strategies of the algorithms. The SFEM was developed to

analyze human decision data by Dal Bó and Fréchette (2011) and has since then

been widely used for the estimation of the strategies that humans use in the re-

peated prisoner’s dilemma (see, for instance, Fudenberg et al., 2012, Romero and

Rosokha, 2018, Dal Bó and Fréchette, 2019).

For a given set of strategies, the SFEM assumes that player i chooses strategy

sl, l = 1, . . . , L, with probability ϕl in a given supergame. In each period of the

supergame, the player either plays according to strategy sl, or makes a random

mistake. We denote the probability of following the strategy and not making a

mistake by σ ∈ (1/2, 1), which is a parameter to be estimated. The probability

that a player plays according to the strategy sl is then given by Pi(s
l) =

∏
t σ

It,i(1−
σ)1−It,i , where It,i is an indicator variable that is equal to one if the player’s

action corresponds to the action prescribed by strategy sl and is zero otherwise.

Summing over all players in the game leads to the loglikelihood function L =∑
i ln(

∑
l ϕ

lPi(s
l)). We maximize L to estimate {ϕl}Ll=1, the frequency with which

the predefined strategies are played in the population.

We include the 20 strategies of Fudenberg et al. (2012) into our set of predefined

strategies. These include classic memory-one strategies such as tit-for-tat (TFT),

grim trigger (GT), win-stay-lose-shift (WSLS), as well as strategies that require a

longer memory length such as lenient grim trigger strategies or win-stay-lose-shift

with two punishment periods. Furthermore, we add an additional memory-one

strategy to the estimation procedure which we found when manually classifying
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the strategies. This strategy prescribes to defect unless both player defected in the

previous period. We call this strategy win-shift-lose-shift (WShLSh) and discuss it

further below. Our set of strategies consists of 25 strategies, the remaining being a

suspicious version of WShLSh with defection in the first round, win-stay-lose-shift

with three periods of punishment, and memory two and three version of WShLSh.

In the memory-two version of WShLSh, the player cooperates if and only if both

players defected in the previous two periods. The memory-three variant works

analogously.

Identification in SFEM relies on the assumption that players make mistakes

in the form of the random deviation described by σ.12 If players do no not make

mistakes, it is impossible to distinguish between certain strategies. For exam-

ple, suppose that one player plays AllC while the other player plays TFT. When

matched with each other, the observed actions are observationally equivalent, yet

the underlying strategies differ. Upon convergence, however, the algorithms play

according to their limit strategy and no longer deviate from this strategy in the

form of random errors. To identify ϕl, we, therefore, need to induce random noise

into the environment. We start from the convergence state. The two algorithms

play according to their limit strategy for 50 rounds. In a randomly selected round,

one of the algorithms deviates from the action dictated by its limit strategy. To

separate strategies off-path, the deviating player deviates in a total of three ran-

domly selected periods.13 The recorded actions after this deviation create noise in

the environment, which allows us to identify the strategies using SFEM. We use

this approach for 1,000 independent simulation runs for each environment and al-

gorithmic parameterization. Furthermore, for each simulation run, we induce the

random deviation separately, that is, we only consider the actions of the player

who did not deviate.

Crucially, compared to many human-player experiments, we can verify that

the SFEM yields correct estimates. The reason is that, for each algorithm, we

directly observe the Q-matrix, which provides the complete mapping from states

to actions. We assess the SFEM for memory-one (k = 1) algorithms, where only

16 strategies are possible (see Table S.1 in the online appendix). Table S.3 in

the online appendix shows the differences between the SFEM and the “manual”

12Furthermore, while model extensions exist (see, for instance, Breitmoser, 2015), SFEM
assumes that players can use pure strategies only. Focusing on pure strategies is without loss of
generality in our setup, as the algorithm cannot learn mixed strategies.

13The random round in which the algorithm deviates is drawn from a Poisson distribution
with λ = 20. Conditional on the first draw, a second Poisson distribution with λ = 1 determines
the second round in which the player deviates. The third round is again determined by a Poisson
draw with λ = 1.
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Figure 2: Strategy frequency estimation of algorithmic data by δ-R
treatment.

Note: The figure reports the estimates for k = 1 for the baseline parameters α = 0.15,
ν = 20. The numerical values are available in Table S.3 in the online appendix.

classification. We find only few and minor differences, which demonstrates that the

SFEM can indeed be applied to algorithmic decision-making in strategic situations.

Importantly, the method could also be applied to completely different algorithms

such as Large Language Models or algorithms that numerically approximate the

Q-matrix. We highlight this by using the SFEM to analyze a Large Language

Model in Section 7. To keep the method of estimating the proportions of the

strategies the same for the human and the algorithmic experiments with different

memory lengths, we focus on the SFEM throughout the paper.

5.2 Algorithmic strategies

We first focus on memory-one algorithms (k = 1), where technically only memory-

one strategies are feasible.14 Figure 2 shows the results of the SFEM for k = 1.

Consistent with low cooperation rates (Figure 1), AllD dominates for low δ–R

combinations. The share of AllD decreases in δ and R. For R ≥ 40 and δ ≥ 0.9,

cooperative strategies emerge more persistently: we mainly observe AllC, TFT,

and WSLS. However, AllD is still the modal strategy for (δ = 0.90, R = 40).

WShLSh is most common for R = 48, and it is even the modal strategy for

14We nevertheless use all 25 strategies in the set of possible strategies of the SFEM to keep
the analysis comparable to k > 1. Online Appendix S.2 provides a robustness check.
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Figure 3: Exploration and the frequency of strategies.
Note: The figure reports the estimates for δ ≥ 0.9, R ≥ 40, k = 1, and α = 0.15.
The WSLS∗ family includes WSLS with memory 1, 2, and 3. The WShLSh∗ family
includes WShLSh with memory 1, 2, and 3 and suspicious WShLSh. The TFT∗ family
includes TFT, TF2T, TF3T, 2TFT, and 2TF2T. The AllD∗ family includes AllD,
DTFT, DTF2T, and DTF3T. The x-axis is on a log-scale.

δ ≥ 0.9 and R = 48. It is learned so often that the average cooperation rate

actually decreases in R. Note that WShLSh never forms a symmetric SPNE.

Nevertheless, the algorithms learn the strategy for large realizations of R. We

discuss WShLSh in detail below.

Result 7. With memory one, the most frequently learned strategies by the algo-

rithms are AllD, WSLS, TFT, and WShLSh.

Next, we analyze the dependency of the strategies on the learning parameter

ν; a higher ν implies more exploration. We combine the various variants of WSLS,

WShLSh, TFT, and Grim, into “families” of strategies (as described in Figure 3).

Figure 3 shows the dependency of the most frequent families of strategies on the

learning parameter ν. The figure reports pooled means of δ ∈ {0.90, 0.95} and R ∈
{40, 48}. A first observation is that the prevalence of AllD drops initially in ν but

reaches a constant level of around 22%. Second, WSLS increases monotonically

in ν and becomes the modal strategy for ν ≥ 100. Third, the WShLSh family is

always among the top three strategies in terms of frequency but falls in ν for ν

sufficiently high. Lastly, the TFT family accounts for rather consistently between

5 and 15% of the data.

We continue with the SFEM when k > 1. Table 9 in the appendix shows the

results. Now that memory-two and -three strategies are feasible for the algorithm,
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we indeed observe a substantial share of TF2T, especially for k = 2 and some

TF3T. With k = 3, also 2TF2T. Likewise, 2WSLS has a significant share for

k ∈ {2, 3}. When we allow for memory k > 1 strategies, the memory-one strategy

DTFT achieves a sizeable share, as does its memory-two counterpart DTF2T.

Similarly, the memory-one strategy DCAlt becomes relevant. Figures 6 and 7 in

the appendix summarize the strategy estimation comparable to Figure 2. With

higher memory, we see that the share of AllC and WSLS decreases while the share

of the TFT family increases.

Result 8. With memory two or three, the most frequently adopted strategies by

the algorithms are AllD and those in the TFT and WShLSh families.

Table 9 in the appendix also shows that algorithms hardly ever adopt strategies

from the grim trigger family. For almost all parameter constellations, grim trigger

is never played. If it is played, its share is estimated to be 0.1%.

Result 9. Algorithms hardly ever learn grim trigger strategies.

To understand the influence of the different parameters on the adopted strate-

gies, we classify the strategies into a few simple categories following Fudenberg

et al. (2012). All strategies except AllD and DTFT are classified as cooperative.

The set of lenient strategies includes TF2T, TF3T, 2TF2T, Grim2 and Grim3.

The forgiving strategies are TFT, TF2T, TF3T, 2TFT, 2TF2T. Note that this

classification is not exclusive, e.g., TFT is both cooperative and forgiving.

In Table 5, we analyze the incidence of strategy categories, using the same set

of determinants as above. Recall that average cooperation was found to increase in

δ, R and k. Zooming in on the set of strategies that drive these outcomes, we find

that for δ and R it is a combination of more cooperative, more lenient, and more

forgiving strategies (all of which become more likely as δ and R increase). For both

δ and R, the effect is most pronounced for cooperative and forgiving strategies.

Similarly, a higher learning rate α leads to lower cooperation; mostly, because

forgiving and cooperative strategies become less likely. However, this analysis

reveals an important difference for the effect of memory length k. Although higher

memory length also increases average cooperation, we see in Table 5 that this effect

is not uniformly driven by cooperative, lenient, and forgiving strategies. Indeed,

there is no statistically significant effect of k for cooperative and lenient strategies.

The effect of k is only statistically significant for forgiving strategies. Therefore,

we conclude that the increasing emergence of cooperative and forgiving strategies

leads to higher average cooperation as δ and R increase. When k increases, mostly

the increase of forgiving strategies lead to higher average cooperation rates.
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Table 5: Determinants of strategy categories

(1) (2) (3)
Cooperative Lenient Forgiving

δ 119.06∗∗∗ 8.49∗∗∗ 33.07∗∗∗

(4.61) (0.56) (1.77)
R 2.46∗∗∗ 0.13∗∗∗ 0.37∗∗∗

(0.12) (0.02) (0.05)
k = 2 1.44 3.13∗∗∗ 6.30∗∗∗

(1.98) (0.24) (0.76)
k = 3 2.02 2.01∗∗∗ 6.60∗∗∗

(1.98) (0.24) (0.76)
α −10.66 −1.47 −4.89

(11.41) (1.39) (4.37)
ν 0.00∗ −0.00 0.00

(0.00) (0.00) (0.00)
Constant −166.02∗∗∗ −11.42∗∗∗ −37.38∗∗∗

(6.52) (0.79) (2.50)
N 900 900 900

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Regarding the specific strategies found, the widespread use of certain strategies

that do not seem very appealing may be surprising. For instance, for k = 1, an

algorithm that plays WShLSh cooperates if and only if both players defected in

the previous round (i.e., the exact opposite of Grim). When paired with another

player who also plays WShLSh, this results in a ((C,C), (D,D)) cycle, that is,

alternating between mutual cooperation and mutual defection. Suppose players

are in state (D,D), why do they still cooperate in the next round? Clearly, they

could gain considerably by deviating in the next round, receiving a payoff of 50

instead of R, and also returning to (D,D) again in two rounds.

The intuition behind this is as follows. Suppose both players’ Q-matrices are

currently such that D is played in all four states. We focus on the state DD,

with associated values Q(DD,C) and Q(DD,D) of subsequent cooperation and

defection, respectively. Since both players defect in state (D,D), each player con-

tinues to receive 25 in that state. Depending on how Q(DD,C) was initialized,

Q(DD,D) may eventually fall below Q(DD,C), in which case the player begins

switching to C in state (D,D). If this switch occurs around the same time for

the other player, both players cooperate in state (D,D) and keep getting positive

feedback (payoff R) by doing so, which reinforces this action. If exploration even-

tually stops, both players have ‘learned’ that cooperation is the optimal action in
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state (D,D), resulting in WShLSh.

To explore this line of reasoning in more detail, we investigate the joint distri-

bution of strategies in Table 10 in the appendix. Specifically, we investigate both

the equilibrium cycle length of the strategies at convergence (columns (1) and

(2)), and the fraction of states on the equilibrium path where both players play

the same actions (columns (3) and (4)), separately for our main (α, ν) specifica-

tion (columns (1) and (3)) as well as for all specifications (columns (2) and (4)).

We find that exactly the same factors that positively influence cooperate rates

(namely δ, R and higher memory length k), also result in outcomes that involve

more nodes on the equilibrium path. Thus, higher cooperation rates are not driven

by increased usage of simple strategies such as AllC, but rather by more involved

strategies like WShLSh that are more cooperative on average. For algorithms with

higher memory length k, it is also more likely that algorithms converge to a state

that involves at least partial cooperation, increasing the average cooperation.

This claim finds additional support when we examine the fraction of states

on the equilibrium path where both players play the same actions. This fraction

is negatively affected by δ and k, i.e., the exact opposite effect of the average

cooperation rates. This again implies that higher cooperation rates are driven by

a higher propensity for players to play opposing actions in certain states.

Note that this idea only holds in the non-stationary setting of competing

against another player whose action may also change over time. Obviously, this

could not happen in a stationary setting where a Q-learning agent always learns

the best response. Thus, there is an interesting analogy to the “meeting of minds”

concept of collusion in competition policy. A Q-learning agent in isolation behaves

individually optimal. When paired with one another, the outcome may closely re-

semble the coordinated outcome, despite the lack of explicit communication.15

5.3 Human strategies

In their meta study, Dal Bó and Fréchette (2018) find that, across experiments,

humans tend to adopt AllD, TFT and GT. While algorithms learn AllD for low

δ, they rarely learn GT. In contrast, algorithms play WSLS and WShLSh, which

are a strategies that are not often observed in human players.

Table 6 shows the results of the SFEM for the new laboratory experiments

we conduct with high discount factors. The table aggregates the TFT and GT

15A similar argument also explains why mutual cooperation can arise in memoryless strategies,
despite the fact that cooperation is clearly dominated.
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Table 6: SFEM for human data, TFT and GT aggregated as families
of stratgies.

Treatment AllC AllD TFT* GT*
(δ = 0.90, R = 40) 2.9 5.0 53.3 29.9
(δ = 0.90, R = 48) 8.1 0.0 69.1 16.6
(δ = 0.95, R = 40) 0.0 3.3 83.0 12.0
(δ = 0.95, R = 48) 0.0 3.3 44.4 48.9

families of strategies (see Table 12 in the appendix for the full set of strategies.) We

note that the TFT and GT strategy families strongly dominate among humans.

Together, they account for 83% to 95% of the strategy estimates. This exceeds

the share of TFT and GT in the most cooperative games in Dal Bó and Fréchette

(2018). Given the high cooperation rates, it is not surprising that AllD plays only

a minor role. More surprising is that also AllC captures only a minor share. It

appears that human subjects learn not to cooperate unconditionally, despite the

high cooperation rates.

6 Levels of cooperation

Now that we know that the determinants of human and algorithmic cooperation

are largely the same, but that humans and algorithms tend to adopt different

strategies, we finally ask about the differences in cooperation rates. Figure 4

shows the cooperation rates in human laboratory experiments (based on data

from sources summarized in Table S.2 in the online appendix). The figure includes

previous experiments with all δ ≤ 0.75 treatments and all R = 32 realizations. We

ran the remaining cell variants where R ≥ 40 and δ ≥ 0.90. Human cooperation

is surprisingly high for these δ–R realizations.16

The comparison with algorithmic data is non-trivial, since the learning pa-

rameters α and ν determine the cooperation level, as do the hard-coded memory

length k. Therefore, we compare the human data to two parameterizations. First,

our baseline parameterization as summarized in Figure 1. And second, as our anal-

ysis in Section 4 suggests that algorithmic cooperation increases in ν (result 6),

the highest ν in our computational experiments, ν = 1, 000 (keeping α = 0.15).

For the baseline parameterization (α = 0.15 and ν = 20), Table 7 shows the

difference between the human and the algorithmic cooperation rates and tests the

16We note for the humans the same non-monotonicity in the cooperation rate for δ = 0.95 as
R increases from 40 to 48.
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Figure 4: Cooperation rates of humans by δ–R treatment.
Note: The numerical values are available in Table 11 in the appendix.

significance with a two-sided Mann-Whitney-U-test. The first observation is that

humans cooperate more in all treatments, although the difference is not always

statistically significant. A second striking insight is that humans cooperate to

some extent where the algorithm entirely fails to choose C, namely when δ = 0.5

and in treatment (δ = 0.75, R = 32). This is true for all levels of memory k.

The difference is relatively minor in treatment (δ = 0.50, R = 32) as humans

also cooperate little in this treatment on average. On the other hand, humans

cooperate with an average rate of about 60% significantly more in the (δ = 0.75,

R = 40) treatment, where algorithms cooperate at a mere rate of 2.75%. We

see this as suggestive evidence that humans try to establish cooperation even in

environments where it is hard to sustain cooperation. Third, the differences in the

cooperation rates are high also for high δ–R treatments; depending on memory k,

the difference may or may not be statistically significant.

Having said that, the conclusion that humans cooperate more than the al-

gorithm is not generally tenable. For the second parametrization (α = 0.15,

ν = 1, 000), Table 7 shows that with the higher ν, algorithms cooperate more

on average for high δ–R realizations. It appears that in environments in which

it is relatively difficult to cooperate, humans establish more cooperation. On the

other hand, in settings where collusion is relatively easy to sustain, algorithms

that explore extensively cooperate more.

We summarize our findings by answering Exploratory Question 3 as follows.
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Table 7: Difference human vs. algorithmic cooperation rates, ν = 20
and ν = 1000

ν = 20 k δ R = 32 R = 40 R = 48

1 0.50 8.15∗∗∗ 20.82∗∗∗ 42.38∗∗∗

0.75 18.54∗∗∗ 59.28∗∗∗ 37.08∗∗∗

0.90 27.45∗∗∗ 40.62 22.86
0.95 19.05 27.16 27.80∗

2 0.50 8.15∗∗∗ 20.82∗∗∗ 44.85∗∗∗

0.75 18.54∗∗∗ 57.65∗∗∗ 44.82∗∗∗

0.90 25.58∗∗∗ 38.05∗∗ 30.29∗

0.95 23.35∗ 37.22∗∗∗ 39.14∗∗∗

3 0.50 8.15∗∗∗ 20.82∗∗∗ 44.13∗∗∗

0.75 18.54∗∗∗ 59.12∗∗∗ 46.13∗∗∗

0.90 31.88∗∗∗ 58.47∗∗∗ 36.75∗∗∗

0.95 26.75∗∗∗ 41.28∗∗∗ 41.71∗∗∗

ν = 1000 k δ R = 32 R = 40 R = 48

1 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 41.15∗∗∗

0.90 36.42∗∗∗ 60.23∗∗∗ 7.46
0.95 49.22∗∗∗ −2.19∗∗∗ −3.51∗∗∗

2 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 65.25∗∗∗

0.90 36.42∗∗∗ 62.97∗∗∗ −10.90∗∗∗

0.95 48.81∗∗∗ −14.04∗∗∗ −12.16∗∗∗

3 0.50 8.15∗∗∗ 20.82∗∗∗ 45.13∗∗∗

0.75 18.54∗∗∗ 59.63∗∗∗ 68.15∗∗∗

0.90 36.42∗∗∗ 62.23∗∗∗ −4.82∗∗∗

0.95 37.53∗∗∗ −8.39∗∗∗ −12.13∗∗∗

Note: This table shows the difference between cooperation rates of hu-
mans and algorithms, as well as the significance level of a two-sided
Mann-Whitney-U-test. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Result 10. When cooperation is relatively hard to sustain, humans cooperate more

than algorithms. The comparison is ambiguous in other cases. Even with high

exploration, algorithms may cooperate significantly less than humans.

We note that “learning to cooperate” means quite different things to humans

and to algorithms. To begin with, humans do not have a parameter that deter-

mines the exploration of new strategies. Humans can learn within a supergame

(where the discount factor largely influences the value of such experimentation)

and across supergames. Algorithmic learning, on the other hand, is strongly influ-

enced by the exploration parameter, an exogenous parameter. Second, “learning to

cooperate” and “cooperation” itself are separate issues for self-learning algorithms

(learning and playing phases). For humans, the data comprises both phases.

Where humans and self-learning algorithms differ strongly is in the learning

phase. Humans seem to only need a small number of rounds or a few supergames

to succeed. They are, however, proponents of a generally cooperative species.

In contrast, reinforcement learning algorithms need to start from scratch and

it takes them an enormous number of rounds to learn. These algorithms are

backward-looking, while humans can be forward-looking. Humans can interpret

each other, play deliberately, and infer the intentions of their opponents. It seems

that these differences between humans and algorithms can explain some of our

results; for example, why humans cooperate more when cooperation is relatively

hard to sustain. While the discount factor and reward parameters affect the

“learning to cooperate” of both humans and algorithms, the differences in the

nature of learning lead to different outcomes when it comes to playing a supergame,

such as the more forgiving nature of the strategies employed by the algorithm.

7 Cooperation among Large Language Models

The paper has so far focused on Q-learning algorithms. These reinforcement learn-

ing algorithms are relevant because they seek to maximize long-run discounted

payoffs and produce a strategy in the game-theoretic sense. Moreover, they are

the building block of more complex algorithms while still being relatively inter-

pretable from an economic perspective. As such, they strike a balance between

maintaining a high degree of external validity and providing an abstraction from

more complex algorithms.

In this section, we turn our attention to a different class of algorithms that are

more representative of those that humans interact with on a daily basis: Large
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Language Models (LLMs). LLMs are trained on a large corpus of human-generated

text, often with the explicit goal of mimicking human behavior (OpenAI, 2022,

2023). They can generate text that is often indistinguishable from text written by

humans (Köbis and Mossink, 2021, Clark et al., 2021). Moreover, their practical

utility has been established across a range of applications. These include assisting

in creating text, enhancing web search capabilities, and serving as coding assistants

(see Bubeck et al., 2023, for an overview). A popular LLM is ChatGPT, which

offers a chat window to interact with the algorithm. As of June 2023, ChatGPT

is claimed to have over 100m users,17 and the tool’s release created a large media

echo.18

Recent papers by Horton (2023) and Grossmann et al. (2023) argue for the

relevance of LLMs for research in the experimental social sciences. Due to the

training process of the algorithms, they can condition their output on a wide

range of human knowledge and are trained to respond in a way similar to hu-

man reasoning. As a result, they might be a valuable model of human behavior.

Moreover, humans regularly use them as advisors, which may include strategic sit-

uations like price setting, negotiations, or everyday interactions with colleagues.

Understanding the behavior of LLMs in (strategic) games can thus potentially be

used to gain a better understanding of humans, but also to understand how advice

from those models to humans might affect outcomes. Recent studies in economics

and computer science use this idea to show parallels between the behavior of LLMs

and humans in finitely repeated (Akata et al., 2023, Guo, 2023), sequential (Bauer

et al., 2023) or one-shot games (Horton, 2023, Brookins and DeBacker, 2023).

Building on the experimental design from the previous sections, we consider

the interaction between two LLMs in the infinitely repeated prisoner’s dilemma.

We focus on the gpt-3.5-turbo-0301 model from OpenAI, which is, at the time of

writing, one of the most advanced language models. For each treatment cell in

Table 2, we simulate 250 independent conversations between two LLM agents. At

the beginning of each simulation, we provide the agent with the instructions for

the game. The instructions follow a style similar to those provided to humans and

use current best practices for instructing LLMs, such as instructing the agent to

think and plan carefully before making a final response (see, for instance, Wei et

al., 2022). Those tactics, known as prompt engineering, usually improve the model

performance and increase the likelihood that the agent understands the strategic

17https://www.demandsage.com/chatgpt-statistics/, last accessed June 23, 2023.
18See, for instance, nytimes.com, cnn.com, bbc.co.uk and economist.com.
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nature of the game.19 Our instructions are similar to those used by Guo (2023).

LLMs do not have an inherent objective when playing the game. To mimic the

goal of humans and Q-learning algorithms in the experiment, we explain to the

LLM that its objective is to maximize its total payoff over the entire experiment.

We describe this to the agents in the initial instructions and when providing the

agent intermediate feedback during the simulations.

We make it clear to the model that the game may end randomly after each

round with a certain probability determined by δ. Similar to human experiments,

the instructions are worded neutrally to avoid any direct association in the wording

with the classic prisoner’s dilemma framing. The model has complete knowledge

of the payoff matrix of the game. The complete instructions are in Online Ap-

pendix S.7.

After correctly answering a series of control questions, both models choose an

action for the current round. Afterward, we inform each agent of the current

round’s payoff, their current total payoff, their previous choice, and the other

agent’s choice. We repeat this procedure for ten rounds in each simulation.20 In

comparison to Q-learning algorithms, the LLMs are not limited in their memory

but can observe the whole conversation and may thus condition their choices on

the entire history of the game.

Besides the choice of the model itself, one of the most critical parameters

influencing the behavior of LLM is the so-called “temperature” of the model. It

determines the degree of randomness in the agent’s answers. A higher temperature

is often associated with more creative responses, while a lower temperature implies

more deterministic behavior. Following other recent work considering LLMs in

economic environments, we keep it at the default value of 1 to allow for some

creativity in their responses (see, for example, Brand et al. 2023 or Guo 2023).

Figure 5 shows the average cooperation rate for each treatment for the LLMs.

The language models are considerably more cooperative than both humans and

Q-learning algorithms when the values of δ and R are small. The cooperation

rates are similar to humans for high values of δ and R. Importantly, the level of

cooperation seems to be largely independent of δ and R. While the cooperation

rates for humans and classical reinforcement learning algorithms differ strongly for

19https://platform.openai.com/docs/guides/gpt-best-practices/give-gpts-time-to-think, last
accessed June 23, 2023.

20Implementing the simulations with actual random stopping is not feasible, as conversations
may become too long for the model to handle. Importantly, the LLMs do not know that the
game will end after this fixed number of rounds but believe they are playing an infinitely repeated
game.
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Figure 5: Cooperation rates of ChatGPT by δ–R treatment.
Note: The numerical values are available in Table S.4 in the online appendix

different parameterizations of the environment, they are seemingly irrelevant for

the large language model considered here. This finding is particularly surprising

given that LLMs have been trained on human text data, suggesting that their

behavior in this domain would resemble that of humans. Moreover, in our prompts

we remind ChatGPT of its objective and δ in each round.

Using the strategy frequency estimation method, we estimate the strategies

that the LLMs use. The results are shown in Table 14 in the appendix. LLMs

use mostly cooperative strategies like AllC and TFT. Additionally, a significant

portion of the data can be attributed to GT and WSLS. It is worth noting that

the usage of GT resembles human behavior, whereas the use of WSLS is more

akin to the strategies employed by Q-learning algorithms.

Our additional results on the interaction between LLMs highlight that these

models can be studied with indefinitely repeated games. Despite fundamental

differences in the learning behavior, we observe parallels in the cooperation rates

for specific parameterizations of the environment and in the strategy choices of

these models. Notably, however, the behavior of these models is less influenced

by the environmental parameters that are important determinants of human and

algorithmic cooperation, such as the discount rate or the payoff from mutual co-

operation. As tools like ChatGPT continue to proliferate in various domains,

gaining a deeper understanding of their behavior will be increasingly crucial for

understanding their impact on society.
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8 Conclusion

Comprehensive knowledge of how algorithms work is essential (Rahwan et al.,

2019) as artificial intelligence is increasingly used in strategic situations: Humans

ask AI for advice, delegate their choices to the algorithm, and use the AI as

a mediator in strategic situations involving other humans. Our work aims to

improve the understanding of algorithmic cooperation.

In a series of computational experiments on the infinitely repeated prisoner’s

dilemma, we find that the same factors that increase human cooperation largely

also determine algorithmic cooperation rates. While this is true for Q-learning

agents, it is not true for Large Language Models such as ChatGPT, suggesting

important differences between the type of algorithm used for advice in strategic

situations. A second finding is that algorithms tend to play different strategies

than humans. For example, Q-learning adopts strategies that try to restart coop-

eration after mutual defections more frequently than humans and LLMs. Another

finding is that no decision-maker “class” cooperates uniformly more than other

classes. However, Q-learning algorithms tend to cooperate less than humans in

environments in which cooperation is relatively hard to sustain.

The attention that research on the behavior of artificial intelligence in strategic

situations receives is probably due to the general dynamic development of the

field of AI and its substantial future potential. Our results point to some of this

potential (e.g., the sometimes spectacularly high cooperation rates), but they also

highlight limitations, at least of the current state of the art. For example, the

algorithm generally does not cooperate at higher levels than humans can achieve.

While the learning and exploitation parameters can be fine-tuned to make the

algorithm cooperate better than humans, we find that there is no set of parameters

that universally improves cooperation across all the prisoner’s dilemma variants

we study: Parameters that improve cooperation in one game may reduce it in

different games. Investigating the theoretical drivers for this ambiguity appears

to be a fruitful area for future research. A similarly sobering conclusion concerns

strategies. While the algorithm often plays more rationally than humans (e.g.,

more forgiving strategies), it can also converge to strategies that are never an

equilibrium. Overall, current artificial intelligence does not seem to systematically

outperform humans in environments prone to cooperation.

Methodologically, we demonstrate that the tools that game-theoretic and ex-

perimental research have developed for analyzing human behavior can be fruitfully

applied to open the black box of algorithmic behavior. Game-theoretic concepts
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such as risk dominance (Harsanyi and Selten, 1988) and the size of the basin of

‘always defect’ (Dal Bó and Fréchette, 2011) explain not only human but also al-

gorithmic cooperation rates. Moreover, the strategy frequency estimation method

(Dal Bó and Fréchette, 2011) can approximate the strategies complex algorithms

learn. We expect the SFEM to also work well in other settings.

There are also questions about collusion between firms that our research can

address. These may need to be taken with a grain of salt, as a two-action dilemma

may not fit oligopoly setups with richer action sets. Nevertheless, there are two

core policy issues to which our work seems relevant. First, it is essential for

antitrust policy to know what market conditions are conducive to self-learning

algorithms. Our results suggest that there are no major differences from human

decision makers. A second important policy question is how to detect collusion by

self-learning algorithms (Calvano et al., 2020b). Here the SFEM may also enhance

our understanding of algorithmic collusion by providing an easy-to-interpret and

theory-driven description of the algorithm’s strategy. Indeed, we find evidence for

retaliation and matching strategies, which are thought to be indicative of collusion

in oligopoly.
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Appendix

A Additional tables

Table 8: Average cooperation by treatment, ν = 20

k δ R = 32 R = 40 R = 48

1 0.50 0.00∗∗∗ 0.00∗∗∗ 2.75∗∗∗

0.75 0.00∗∗∗ 0.35∗∗∗ 31.07∗∗∗

0.90 8.97∗∗∗ 39.12 66.05

0.95 37.77 55.35 60.03∗

2 0.50 0.00∗∗∗ 0.00∗∗∗ 0.29∗∗∗

0.75 0.00∗∗∗ 1.98∗∗∗ 23.33∗∗∗

0.90 10.84∗∗∗ 41.69∗∗ 58.63∗

0.95 33.47∗ 45.29∗∗∗ 48.70∗∗∗

3 0.50 0.00∗∗∗ 0.00∗∗∗ 1.01∗∗∗

0.75 0.00∗∗∗ 0.51∗∗∗ 22.02∗∗∗

0.90 4.54∗∗∗ 21.26∗∗∗ 52.17∗∗∗

0.95 30.07∗∗∗ 41.23∗∗∗ 46.13∗∗∗

Note: This table depicts average cooperation rates by

algorithms as well as the significance of a two-sided

Mann-Whitney-U-test relative to human cooperation

(see Table 11). ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 9: Distribution of strategies by k and experiment. Strategies
which are never above 5% are omitted.

k δ R AllC AllD TFT DTFT TF2T 2TFT 2TF2T WSLS DCAlt WShLSh 2WShLSh 3WShLSh σ

1 0.50 32 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
48 0.0 93.3∗∗∗ 0.0 1.3∗∗∗ 0.0 0.0 0.0 0.0 0.0 5.3∗∗∗ 0.0 0.0 1.00

0.75 32 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 99.6∗∗∗ 0.0 0.0 0.0 0.0 0.0 0.3∗ 0.0 0.1∗∗∗ 0.0 0.0 1.00
48 4.4∗∗∗ 48.6∗∗∗ 2.2∗∗∗ 0.8∗∗ 0.0 0.0 0.0 4.4∗∗∗ 1.8∗∗∗ 37.8∗∗∗ 0.0 0.0 0.98

0.90 32 3.2∗∗∗ 79.7∗∗∗ 3.7∗∗∗ 9.9∗∗∗ 0.2 0.0 0.0 1.2∗∗∗ 1.0∗∗∗ 0.4∗∗∗ 0.0 0.0 0.99
40 8.9∗∗∗ 47.8∗∗∗ 7.7∗∗∗ 7.4∗∗∗ 0.0 0.0 0.0 18.7∗∗∗ 1.5∗∗∗ 7.7∗∗∗ 0.0 0.0 0.99
48 11.9∗∗∗ 3.8∗∗∗ 10.2∗∗∗ 1.0∗∗ 0.0 0.0 0.0 15.6∗∗∗ 1.2∗∗∗ 56.2∗∗∗ 0.0 0.0 0.99

0.95 32 12.0∗∗∗ 39.6∗∗∗ 14.9∗∗∗ 19.0∗∗∗ 0.0 0.0 0.0 10.4∗∗∗ 1.4∗∗∗ 2.1∗∗∗ 0.0 0.0 0.99
40 18.0∗∗∗ 27.0∗∗∗ 13.8∗∗∗ 12.2∗∗∗ 0.0 0.0 0.0 18.8∗∗∗ 0.9∗∗ 9.2∗∗∗ 0.0 0.0 0.99
48 10.3∗∗∗ 3.8∗∗∗ 7.3∗∗∗ 2.9∗∗∗ 0.0 0.0 0.0 10.1∗∗∗ 1.3∗∗∗ 64.2∗∗∗ 0.0 0.0 0.99

2 0.50 32 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
48 0.0 98.4∗∗∗ 0.0 0.8∗∗ 0.0 0.0 0.0 0.0 0.0 0.0 0.8∗∗ 0.0 1.00

0.75 32 0.0 99.9∗∗∗ 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 97.2∗∗∗ 0.9∗∗∗ 0.2 0.2 0.7∗ 0.0 0.1 0.0 0.2∗∗∗ 0.0 0.0 1.00
48 1.0∗∗ 60.4∗∗∗ 5.4∗∗∗ 1.1∗∗ 2.1∗∗∗ 1.0∗∗ 0.4 1.1∗∗ 0.8∗∗ 4.0∗∗∗ 18.4∗∗∗ 0.0 0.97

0.90 32 0.4∗ 70.8∗∗∗ 4.2∗∗∗ 9.0∗∗∗ 1.6∗∗∗ 3.3∗∗∗ 2.0∗∗∗ 0.3 1.1∗∗ 4.2∗∗∗ 1.4∗∗∗ 0.0 0.95
40 3.7∗∗∗ 36.8∗∗∗ 15.2∗∗∗ 6.2∗∗∗ 9.1∗∗∗ 4.4∗∗∗ 2.0∗∗ 0.8∗ 2.5∗∗∗ 10.3∗∗∗ 4.0∗∗∗ 0.0 0.91
48 4.4∗∗∗ 3.3∗∗∗ 15.0∗∗∗ 2.7∗∗∗ 8.9∗∗∗ 3.3∗∗∗ 1.7∗∗ 2.1∗∗∗ 4.7∗∗∗ 20.0∗∗∗ 30.0∗∗∗ 0.0 0.92

0.95 32 0.7∗∗ 30.7∗∗∗ 14.1∗∗∗ 17.2∗∗∗ 4.3∗∗∗ 2.2∗∗∗ 4.4∗∗∗ 0.2 5.2∗∗∗ 12.4∗∗∗ 3.5∗∗∗ 0.0 0.89
40 1.5∗∗∗ 16.7∗∗∗ 14.6∗∗∗ 10.2∗∗∗ 8.4∗∗∗ 1.7∗∗∗ 1.4∗∗ 0.8∗∗ 5.5∗∗∗ 27.1∗∗∗ 5.2∗∗∗ 0.0 0.85
48 3.8∗∗∗ 2.3∗∗∗ 6.4∗∗∗ 2.4∗∗∗ 5.8∗∗∗ 1.4∗∗ 0.0 0.6∗ 6.0∗∗∗ 26.3∗∗∗ 41.0∗∗∗ 0.0 0.88

3 0.50 32 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
48 0.0 98.3∗∗∗ 0.1 0.3 0.0 0.6∗ 0.0 0.1 0.0 0.0 0.0 0.1 1.00

0.75 32 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.00
40 0.0 98.9∗∗∗ 0.0 0.0 0.0 0.5∗ 0.2 0.0 0.0 0.1∗∗∗ 0.0 0.0 1.00
48 0.9∗ 68.5∗∗∗ 3.5∗∗∗ 0.9∗∗ 1.1∗∗ 5.3∗∗∗ 3.2∗∗∗ 1.0∗∗ 0.1 3.4∗∗∗ 2.4∗∗∗ 5.2∗∗∗ 0.96

0.90 32 0.0 87.0∗∗∗ 2.2∗∗∗ 4.1∗∗∗ 0.1 0.1 1.6∗∗∗ 0.0 0.4∗ 1.5∗∗∗ 1.6∗∗∗ 0.7∗∗ 0.97
40 0.1 57.8∗∗∗ 7.6∗∗∗ 5.7∗∗∗ 2.0∗∗∗ 2.2∗∗∗ 1.9∗∗∗ 0.5∗ 2.2∗∗∗ 8.3∗∗∗ 7.1∗∗∗ 2.3∗∗∗ 0.91
48 1.8∗∗ 5.6∗∗∗ 11.7∗∗∗ 4.7∗∗∗ 4.9∗∗∗ 4.3∗∗∗ 3.7∗∗∗ 1.2∗∗ 3.7∗∗∗ 24.0∗∗∗ 14.3∗∗∗ 13.5∗∗∗ 0.83

0.95 32 0.2 26.3∗∗∗ 18.7∗∗∗ 24.2∗∗∗ 0.4∗ 0.6∗ 5.2∗∗∗ 1.5∗∗∗ 2.4∗∗∗ 8.3∗∗∗ 7.2∗∗∗ 2.6∗∗∗ 0.92
40 0.3 15.9∗∗∗ 17.2∗∗∗ 13.3∗∗∗ 0.8∗ 3.0∗∗∗ 3.0∗∗∗ 0.2 5.5∗∗∗ 20.2∗∗∗ 10.4∗∗∗ 4.8∗∗∗ 0.84
48 0.8∗∗ 3.5∗∗∗ 5.4∗∗∗ 5.6∗∗∗ 2.5∗∗∗ 2.3∗∗∗ 0.4 0.8∗ 6.5∗∗∗ 36.8∗∗∗ 16.2∗∗∗ 17.0∗∗∗ 0.84
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Table 10: Cycle length and same actions

(1) (2) (3) (4)
Cycle length Cycle length Frac. same a Frac. same a

δ 2.88∗∗∗ 1.24∗∗∗ −48.38∗∗∗ −21.86∗∗∗

(0.03) (0.00) (0.65) (0.10)
R 0.04∗∗∗ 0.02∗∗∗ 0.20∗∗∗ 0.13∗∗∗

(0.00) (0.00) (0.02) (0.00)
k = 2 0.51∗∗∗ 0.13∗∗∗ −9.31∗∗∗ −2.16∗∗∗

(0.01) (0.00) (0.28) (0.04)
k = 3 0.76∗∗∗ 0.31∗∗∗ −12.03∗∗∗ −4.67∗∗∗

(0.01) (0.00) (0.28) (0.04)
α −0.49∗∗∗ 14.67∗∗∗

(0.01) (0.24)
ν −0.00∗∗∗ 0.01∗∗∗

(0.00) (0.00)
Constant −2.47∗∗∗ −0.32∗∗∗ 126.83∗∗∗ 105.88∗∗∗

(0.04) (0.01) (0.88) (0.14)
Mean 1.62 1.28 90.36 95.67

Subsample (α = 0.15, ν = 20) All (α = 0.15, ν = 20) All
N 36000 899975 36000 899975

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Average cooperation by humans

δ R = 32 R = 40 R = 48

0.50 8.15 20.82 45.13

0.75 18.54 59.63 68.15

0.90 36.42 79.73 88.91

0.95 56.82 82.51 87.84

Note: Average cooperation rates of humans, based

on data from sources summarized in Table S.2

Table 12: Distribution of strategies used by humans. Strategies which
are never above 5% are omitted.

δ R AllC AllD TFT TF2T TF3T 2TFT 2TF2T Grim Grim2 Grim3 σ

0.90 40 2.9 5.0 24.9∗∗ 17.9 3.9 6.4 0.2 9.2 6.9 13.8∗ 0.96
48 8.1 0.0 31.0∗∗ 21.0 0.0 5.6 11.5 0.0 0.0 16.6 0.98

0.95 40 0.0 3.3 37.0∗∗∗ 11.0 10.4 5.8 18.8 3.0 0.0 9.0 0.98
48 0.0 3.3 23.6 20.8 0.0 0.0 0.0 6.8 13.8 28.3∗ 0.99
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Table 13: Difference human vs. ChatGPT cooperation rates

δ R = 32 R = 40 R = 48

0.50 −68.19∗∗∗ −60.52∗∗∗ −30.35∗∗∗

0.75 −57.44∗∗∗ −20.21∗ −10.15∗

0.90 −42.72∗∗∗ −1.65∗ 6.73∗

0.95 −18.14 1.17∗ 7.22

Note: This table depicts the difference between coop-

eration rates of humans and ChatGPT, as well as the

significance of a two-sided Mann-Whitney-U-test. ∗

p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 14: Distribution of strategies used by ChatGPT. Strategies
which are never above 5% are omitted.

δ R AllC AllD TFT 2TFT T2 Grim WSLS 2WSLS 3WSLS σ

0.50 32 20.1∗∗∗ 5.3∗∗∗ 20.8∗∗∗ 12.7∗ 2.4 4.5 14.6∗∗ 4.2 4.1 0.95

40 13.3∗∗ 4.3∗∗∗ 27.3∗∗∗ 0.2 0.0 22.3∗ 17.6∗∗∗ 4.6 5.9 0.96

48 14.8∗∗∗ 4.6∗∗ 22.0∗∗ 0.0 3.5 20.8∗∗ 17.0∗∗∗ 6.0 0.7 0.94

0.75 32 8.0∗ 6.3∗∗∗ 16.0∗∗ 0.0 3.8 18.6∗ 10.8∗∗ 7.3 20.5∗ 0.94

40 14.5∗∗ 4.5∗∗∗ 17.3∗∗ 0.0 1.1 16.5∗ 19.8∗∗∗ 8.7 4.4 0.96

48 12.9∗∗ 4.5∗∗∗ 18.0∗∗∗ 2.4 2.8 13.1 23.9∗∗∗ 5.2 9.9 0.96

0.90 32 7.8∗ 5.2∗∗∗ 18.9∗∗ 6.6 0.0 23.3∗ 17.8∗∗∗ 10.6∗ 0.0 0.96

40 15.2∗∗ 7.9∗∗∗ 16.6∗∗ 0.0 0.0 26.4∗∗∗ 15.3∗∗ 8.1 5.5 0.97

48 18.8∗∗∗ 4.4∗∗∗ 27.1∗∗∗ 2.3 8.4∗ 28.1∗∗ 3.5 4.4 0.0 0.97

0.95 32 16.5∗∗∗ 7.7∗∗∗ 22.4∗∗∗ 0.0 5.3 17.9∗∗ 5.8 0.0 9.9∗ 0.96

40 8.1∗ 6.0∗∗∗ 25.4∗∗∗ 0.0 0.0 32.2∗∗∗ 13.1∗∗ 4.7 4.0 0.97

48 15.6∗∗∗ 8.3∗∗∗ 12.7∗ 0.0 10.6∗ 27.1∗∗∗ 18.9∗∗∗ 0.0 2.9 0.97
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B Additional figures
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Figure 6: Strategy frequency estimation of algorithmic data by δ-R
treatment and k = 2.

Note: The figure reports the cooperation rates averaged across for the baseline param-

eters α = 0.15, ν = 20.
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Figure 7: Strategy frequency estimation of algorithmic data by δ-R
treatment and k = 3.

Note: The figure reports the cooperation rates averaged across for the baseline param-

eters α = 0.15, ν = 20.
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