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Multi-unit auctions frequently take place in environments with limited information, such as in 
new markets and under volatile macroeconomic conditions. We characterize optimal prior-free 
bids in such auctions; these bids minimize the maximal loss in expected utility resulting from 
uncertainty surrounding opponent behavior. We show that optimal bids are readily computable in 
this environment despite bidders having multi-dimensional private information. In the pay-as-bid 
auction the prior-free bid is unique; in the uniform-price auction the prior-free bid is unique if the 
bidder is allowed to determine the quantities for which they bid, as in many practical applications. 
We compare prior-free bids and auction outcomes across auction formats; while outcome 
comparisons are ambiguous, pay-as-bid auctions tend to generate greater revenue and welfare 
than uniform-price auctions when bidders’ values are dispersed. We also compare outcomes in 
limited-information environments to outcomes in high-information environments, modeled as 
bidders playing Bayes-Nash equilibrium, and show that Bayes-Nash outcomes dominate prior-free 
outcomes when the auction is competitive.

1. Introduction

Pay-as-bid and uniform-price are multi-unit auction formats that play a critical role in the allocation of homogeneous goods. 
They are used to allocate generation capacity across power plants in electricity markets and to determine the interest rates at which 
governments can issue new debt.1 In these auctions bidders submit demand curves to the auctioneer. The auctioneer uses the submitted 
demand curves to compute market-clearing prices and quantities, and each bidder is allocated their demand at the market-clearing 
price. In the pay-as-bid auction each bidder pays their bid for each unit received, while in the uniform-price auction they pay the 
constant market-clearing price for each unit received. The different pricing rules induce different strategic incentives and hence 
different outcomes. These differences are of interest to regulators: for example, in Summer 2022 prices for natural gas and electricity 
were high in Europe due to Russia’s invasion of Ukraine. The high prices sparked a debate about whether electricity prices would be 
lower had the pay-as-bid auction been used instead of the uniform-price auction (Heller and Wieshammer, 2023).

Existing theoretical studies of these auctions typically analyze Bayes-Nash equilibria (BNE) and often restrict attention to relatively 
homogeneous bidders. A common justification for Nash equilibrium play is that players learn to mutually best respond over time. 
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Indeed, Doraszelski et al. (2018) show that following a deregulation of the British electricity market, bidding behavior can be explained 
by Bayes-Nash equilibrium after three to four years. However, some multi-unit auctions happen rarely, close to a deregulation, or 
after substantial shocks that create structural and strategic uncertainty. For these auctions, Bayes-Nash equilibrium analysis is not 
applicable.2 Moreover, when many goods are being auctioned, Bayesian models have previously been tractable only if the bidders 
were assumed to be homogeneous, while real-world bidders are often heterogeneous; little is known about equilibrium behavior in 
these auctions when bidders have general, multi-dimensional private values.3

In this paper we study initial play of arbitrarily heterogeneous bidders in multi-unit auctions.4 In particular, we study the opposite 
extreme of Bayes-Nash equilibrium in terms of the bidders’ information: While bidders in a BNE have common knowledge of the exact 
opponent bid distribution, our bidders know only that bids must be consistent with the rules of the auction; they bid under maximal 
uncertainty. We study bidders that deal with this uncertainty (ambiguity) by minimizing the maximal loss in expected utility due to 
not knowing the opponent bid distribution (Savage, 1951) and refer to their optimal bids as the minimax-loss bids.

A first takeaway is that our model is tractable for many questions that can be asked in multi-unit auction environments. For 
example, market outcomes can be computed where Bayes-Nash equilibrium methods are intractable (cf. footnote 2). In contrast with 
BNE, we characterize minimax-loss bids for any profile of weakly decreasing multi-dimensional bidder valuations.5 As the optimal 
bid functions depend non-linearly on all marginal values, closed-form solutions are available only when the number of parameters is 
relatively low (such as in the case of two-unit demand or under flat marginal values); however, optimal bids can always be computed 
straightforwardly with numerical methods. Coming back to the motivating example of whether electricity prices would have been 
lower with an alternative pricing rule, one could specify the (distribution of) marginal costs of electricity providers and use our 
bid function characterizations to numerically investigate the impact of the market design on electricity prices. In terms of bidding 
language, our prior-free non-equilibrium approach is tractable with discrete and continuous bids and also in the empirically relevant 
setting where bidders are constrained to place fewer bids than the number of units they demand.6

A second finding is that minimax-loss bids under maximal uncertainty explain existing experimental bidding data qualitatively 
better than Bayes-Nash equilibrium. In experimental auctions with two-unit supply, two bidders, and flat marginal values, Engelmann 
and Grimm (2009) find that subjects do not play BNE strategies: they do not bid zero on the second unit in the uniform-price auction 
and they do not submit flat bids in the pay-as-bid auction. Such behavior can be qualitatively explained by minimax-loss bids under 
maximal uncertainty: the second minimax-loss bid is positive in the uniform-price auction and the second bid is lower than the first 
in the pay-as-bid auction.

Third, minimax-loss and Bayes-Nash equilibrium bids cannot be compared unambiguously. When there are two bidders and two 
units for sale in a uniform-price auction, the second bid is often zero in the Bayes-Nash equilibrium (Ausubel et al., 2014; Engelbrecht

Wiggans and Kahn, 1998; Noussair, 1995), but it is strictly positive under maximal uncertainty. In the pay-as-bid auction with 
single-dimensional private information and a uniform prior, the bids cannot be ranked unambiguously across informational regimes. 
However, when there are many goods and homogeneous bidders with sufficiently flat marginal values (as in Ausubel et al. (2014)), 
we show that, for relatively small quantities, Bayes-Nash equilibrium bids are higher than minimax-loss bids regardless of the auction 
format. The intuition is that common knowledge of homogeneity creates competitive pressure that leads to higher bids; under maximal 
uncertainty, bidders do not know that all are alike and that they will therefore bid similarly, which does not push bids up. On the 
other hand, for large quantities BNE bids in the pay-as-bid auction can be so high that they are above value (Pycia and Woodward, 
2025); that is, the equilibrium can be in dominated strategies. Minimax-loss bids are always undominated.

Regarding design implications, ex post payments are not generally comparable across auction formats.7 For small quantities, the 
high bids of the uniform-price auction yield higher revenue than the low bids of the pay-as-bid auction, but for large quantities the 
low bids of the uniform-price auction yield lower revenue than the aggregate payment of both high and low bids in the pay-as-bid 
auction.8 We also discuss how to set supply to maximize revenue (Propositions 5, 6, and 7).

Over time, auctioneers may be able to steer behavior toward the informational extremes of maximal uncertainty or Bayes-Nash 
equilibrium by revealing no or a lot of information about past bids (respectively). We find that the auctioneer does not unambiguously 
prefer one informational extreme over the other. When bidders are homogeneous, common knowledge of this homogeneity creates a 

2 A short-run justification for equilibrium play is introspection: players reason to equilibrium strategies (Crawford, 2016). In multi-unit auctions (as in any Bayesian 
game), this requires a common prior and commonly known equilibrium strategies (Aumann and Brandenburger, 1995). However, even if bidders have a common 
prior, the computation of equilibrium strategies is typically intractable due to the multi-dimensionality of bidders’ information (Swinkels, 2001; Hortaçsu and Kastl, 
2012).

3 Bayesian equilibrium constructions in these auctions do exist in parameterized contexts. For example, Engelbrecht-Wiggans and Kahn (2002) describe equilibrium 
when demand barely exceeds supply; Back and Zender (1993) and Wang and Zender (2002) when the good is divisible and bidders have common values; Ausubel 
et al. (2014) when bidders demand two units; Burkett and Woodward (2020a) when bidders’ values are defined by order statistics; and Pycia and Woodward (2025) 
when bidders have common, decreasing marginal values.

4 Level-𝑘 reasoning provides an alternative non-equilibrium approach that has been applied to initial play in multi-unit auctions (Hortaçsu et al., 2019). However, 
Rasooly (2023) does not find support for the level-𝑘 model in an experiment designed to disentangle level-𝑘 from equilibrium behavior in single-unit auctions.

5 In Appendix B we consider the possibility of complementarities in bidders’ preferences, represented by increasing marginal values.
6 In the constrained setting, the implied bid function is a step function, and the location and height of the steps are the bidders’ choice variables. Although step 

functions are mathematically simple, they can be economically complex: when bids are constant over wide intervals, bidders are almost always rationed. When 
rationing occurs with positive probability, Bayesian equilibrium bids must take bidding incentives for non-local units into account, and the equilibrium first-order 
conditions imply a complicated non-local differential system (Kastl, 2012; Woodward, 2016). Our prior-free approach is computationally more tractable, and we 
provide analytic solutions in the case of constant marginal values.

7 In an equilibrium framework with ambiguity and unit-demand bidders, Bougt et al. (2025) show that the pay-as-bid auction raises the highest revenue.
8 Payment ambiguity has been observed in Bayes-Nash equilibrium (Ausubel et al., 2014) and empirically (Barbosa et al., 2022).
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highly competitive auction and revenue is higher in Bayes-Nash equilibrium than under maximal uncertainty, where bidders cannot 
rule out asymmetry. However, in settings where (tacitly) collusive, low-revenue Bayes-Nash equilibria exist—such as in a uniform

price auction with two bidders and two goods—revenue is higher under maximal uncertainty. In this case, bidders are unaware of 
the collusive scheme in which one bidder effectively offers a single good for free while pricing the second good prohibitively high. 
The extent to which this generalizes and whether intermediate informational policies can be optimal are beyond the scope of the 
paper.

Regarding empirical implications, our characterizations also lead to novel testable empirical predictions. For example, in the 
constrained setting and with constant marginal values, minimax-loss bid quantities are evenly spaced in the pay-as-bid auction, but 
concentrated on intermediate quantities in the uniform-price auction. In general, if one knew the bidders’ values, then one could test 
whether they use the minimax-loss bids. Usually, however, one does not observe the bidders’ values. In this case, the optimal bidding 
strategies can be used to estimate the bidders’ values. Our uniqueness results and the characterizations of the optimal bids lead to 
point-identification of the values and a simple estimation procedure.

We introduce the model in the next section. Section 3 illustrates our approach and some findings with an analysis of the two

unit case. Section 4 contains some key theoretical results for the analysis of minimax loss in pay-as-bid and uniform-price auctions, 
which are applied in Sections 5 and 6 to analyze the unconstrained and bidpoint-constrained cases, respectively. Section 7 concludes. 
Omitted proofs are in Appendix A. Appendix B analyzes increasing marginal values. Appendices C and D contain a detailed analysis 
of the constrained case and the two-unit last accepted bid uniform-price auction, respectively.

2. Model

We consider an auction for quantity 𝑄 > 0 of a perfectly divisible, homogeneous good. There are 𝑛 ≥ 2 bidders participating in 
the auction. Buyer 𝑖, 𝑖 ∈ {1,… , 𝑛}, has marginal value function 𝑣𝑖 ∶ [0,𝑄]→ℝ+; that is, 𝑣𝑖(𝑞) is their marginal value for quantity 𝑞. 
We assume that marginal values are weakly decreasing, so that 𝑣𝑖(𝑞) ≥ 𝑣𝑖(𝑞′) whenever 𝑞 ≤ 𝑞′, and assume as well that 𝑣𝑖 is Lipschitz 
continuous.9 For notational simplicity we assume that bidders have a strictly positive value for each unit, hence 𝑣𝑖(𝑄) > 0.10 The 
marginal value functions (𝑣𝑖)𝑛

𝑖=1 may be distributed according to some joint distribution.

Bidder 𝑖 submits a weakly decreasing and right-continuous bid function 𝑏𝑖 ∶ [0,𝑄]→ ℝ+. After observing the bid profile (𝑏𝑗 )𝑛
𝑗=1

the auctioneer computes a market-clearing price 𝑝⋆,

𝑝⋆ ∈
{
𝑝LAB, 𝑝FRB

}
;

𝑝LAB = sup

{
𝑝 ∶

𝑛 ∑
𝑖=1 

𝑞𝑖 ≥ 𝑄 where 𝑞𝑖 = sup{𝑞′ ∶ 𝑏𝑖(𝑞′) ≥ 𝑝}

}
,

𝑝FRB = inf

{
𝑝 ∶

𝑛 ∑
𝑖=1 

𝑞𝑖 ≤ 𝑄 where 𝑞𝑖 = sup{𝑞′ ∶ 𝑏𝑖(𝑞′) ≥ 𝑝}

}
.

There is strict excess supply for prices above 𝑝LAB and strict excess demand for prices below 𝑝FRB. Hence, the prices 𝑝LAB and 𝑝FRB

are related to the last bid accepted and the first bid rejected, respectively.11 All bids strictly above the market-clearing price 𝑝⋆ are 
awarded, and all bids strictly below the market-clearing price are rejected. When there are multiple bids placed at the market-clearing 
price, ties are broken randomly.12

Bidders are risk neutral. If a bidder with value 𝑣𝑖 receives quantity 𝑞𝑖 and makes transfer 𝑡𝑖, their utility is

𝑢̂
(
𝑞𝑖, 𝑡𝑖;𝑣𝑖

)
=

𝑞𝑖

∫
0 

𝑣𝑖 (𝑥)𝑑𝑥− 𝑡𝑖.

We consider two common auction formats. In a pay-as-bid (or discriminatory) auction (PAB), transfers are equal to the sum of 
bids for received units, 𝑡PAB

𝑖 = ∫ 𝑞𝑖

0 𝑏𝑖(𝑥)𝑑𝑥. In a uniform-price auction (UPA), transfers are equal to the market-clearing price times the 
number of units received, 𝑡UPA

𝑖 = 𝑝⋆𝑞𝑖. We analyze uniform-price auctions with 𝑝FRB or 𝑝LAB as the market-clearing price. The exact 
market-clearing price matters only when selling discrete units (as in Section 3). If opponent bids 𝑏−𝑖 are distributed according to the 
integrable distribution 𝐵−𝑖, we write bidder 𝑖’s interim utility as 𝑢(𝑏𝑖,𝐵−𝑖;𝑣𝑖) = 𝔼𝐵−𝑖 [𝑢̂(𝑞𝑖(𝑏), 𝑡𝑖(𝑏);𝑣𝑖)], where 𝑞𝑖 and 𝑡𝑖 are functions 
that map, according to the auction rules, the bidders’ bid functions 𝑏 = (𝑏𝑖, 𝑏−𝑖) to bidder 𝑖’s quantity 𝑞𝑖 and transfer 𝑡𝑖, respectively.13

9 We analyze increasing marginal values in Appendix B.
10 Our results remain valid when bidders do not strictly demand all units, provided we replace aggregate supply 𝑄 with the supremum of all quantities for which 

marginal value is strictly positive, 𝑄𝑖 = sup{𝑞∶ 𝑣𝑖(𝑞) > 0}. Additionally, if 𝑄𝑖 < 𝑄, all results obtain in the limit with values 𝑣𝑖(𝑞) + 𝜀, letting 𝜀 ↘ 0.
11 See Burkett and Woodward (2020a). Treasury auctions frequently apply last-accepted-bid pricing (e.g., the United States and Switzerland) while theoretical 

analyses frequently study first-rejected-bid pricing (Ausubel et al., 2014).
12 As long as all bids strictly above the market-clearing price are awarded, the precise tiebreaking rule does not affect our results.
13 Integrability of 𝐵−𝑖 is not a constraint on our results, since in all auction formats 𝑢̂ is bounded below by 0 and above by 𝑄𝑣𝑖(0).
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2.1. Loss and regret

Given a distribution of opponent bids 𝐵−𝑖, bidder 𝑖’s loss from bidding 𝑏𝑖 instead of the interim-optimal bid is

𝐿
(
𝑏𝑖;𝐵−𝑖, 𝑣𝑖

)
= sup

𝑏̃

𝔼𝐵−𝑖

[
𝑢̂
(
𝑞𝑖(𝑏̃, 𝑏−𝑖), 𝑡𝑖

(
𝑏̃, 𝑏−𝑖

)
;𝑣𝑖
)
− 𝑢̂
(
𝑞𝑖
(
𝑏𝑖, 𝑏−𝑖

)
, 𝑡𝑖
(
𝑏𝑖, 𝑏−𝑖

)
;𝑣𝑖
)]

.

Loss measures the difference between expected utility given bid 𝑏𝑖 and the utility obtainable by optimizing the submitted bid with 
respect to distribution 𝐵−𝑖. For example, when bid 𝑏𝑖 is a best response to distribution 𝐵−𝑖, loss is zero. Loss is evaluated from an 
interim perspective; the equivalent ex post concept is regret,

𝑅
(
𝑏𝑖;𝑏−𝑖, 𝑣𝑖

)
= sup

𝑏̃

𝑢̂
(
𝑞𝑖
(
𝑏̃, 𝑏−𝑖

)
, 𝑡𝑖
(
𝑏̃, 𝑏−𝑖

)
;𝑣𝑖
)
− 𝑢̂
(
𝑞𝑖
(
𝑏𝑖, 𝑏−𝑖

)
, 𝑡𝑖
(
𝑏𝑖, 𝑏−𝑖

)
;𝑣𝑖
)
.

Regret measures how much additional utility the bidder could receive if they had known the bids their opponents submitted prior to 
choosing their own bid.14 A utility-maximizing bidder with perfect foreknowledge of their opponents’ bids will have zero regret.

If bidder 𝑖 knew the true distribution of opponent bids 𝐵−𝑖, she would evaluate potential bids by standard expected utility. 
However, in our model bidders face ambiguity regarding the true distribution 𝐵−𝑖 and know only that 𝐵−𝑖 ∈ , where  is a set 
of feasible distributions over opponent bids. In the presence of this ambiguity, bidder 𝑖 evaluates potential bids according to the 
maximum loss generated by any feasible distribution of opponent bids; the optimal bid 𝑏⋆ minimizes this loss15:

𝑏⋆ ∈ argmin
𝑏𝑖

sup 
𝐵−𝑖∈

𝐿
(
𝑏𝑖;𝐵−𝑖, 𝑣𝑖

)
.

Hence, our bidders adopt the same interim perspective as Bayesian players that best respond to (their belief of) the opponent bid 
distribution.16

We refer to 𝑏⋆ as bidder 𝑖’s minimax-loss or optimal bid. We focus on the case of maximal uncertainty, in which  contains all joint 
distributions on feasible bid functions; i.e., all distributions over 𝑛 − 1 weakly-decreasing functions mapping [0,𝑄] to ℝ+. Note that 
 is rich enough to include uncertainty about the number of bidders and supply.17

Savage (1951) introduced the minimax loss (regret) decision criterion for statistical decision problems. Since then it has been 
applied in econometrics (Manski, 2021), mechanism design (Bergemann and Schlag, 2008, 2011; Guo and Shmaya, 2023, 2025), 
operations research (Perakis and Roels, 2008; Besbes and Zeevi, 2011), and more generally in strategic settings. Our paper belongs to 
the latter category. A first paper on analyzing games with minimax regret as the players’ decision criterion was Linhart and Radner 
(1989) who study the minimization of worst-case regret in bargaining. Parakhonyak and Sobolev (2015) consider Bayesian firms best 
responding to consumers whose search rules for the lowest price are derived from worst-case regret minimization. Renou and Schlag 
(2010), Halpern and Pass (2012), Kasberger (2022), and Schlag and Zapechelnyuk (2023) propose solution concepts for loss (regret) 
minimizing players.

We offer a descriptive and a prescriptive interpretation of minimax-loss bids. From a prescriptive perspective, a practical advan

tage of our non-Bayesian approach is that the bids are completely prior-free, i.e., they do not depend on the other bidders’ value 
distributions and strategies. All a bidder needs to know is their own willingness-to-pay. The bids are robust because the bidder need 
not worry about misspecified beliefs. Indeed, if any bid distribution is deemed possible, then in particular the actual distribution is 
possible. Kasberger and Schlag (2024) illustrate empirically that loss-minimizing bids perform well in first-price auctions, despite 
bidders having very coarse beliefs about competitors’ behavior. Even the bid under maximal uncertainty performs better than ob

served bids in experimental and field data. On the other hand, group decision-making provides a descriptive motivation for minimax 
loss. Suppose a corporation tasks a team with finding the right bid. Based on information learned after the auction, the executive 
board or a rival colleague might criticize the bidding team for having missed an opportunity, and the bidding team may want to 
preemptively defend against such a critique. By selecting a minimax-loss bid the bidding team can claim, ``Your alternative bid would 
have been worse than our bid had there been this other bid distribution. This bid distribution was a real possibility.'' The minimax 
bid is then robust to complaints that appeal to the materialized bid distribution.18 Minimax bids are a way to justify the choice as an 
(undisputed) counterfactual case can be presented so that the minimax bid was the compromise between the two cases.19

14 We follow Schlag and Zapechelnyuk (2021) and Kasberger and Schlag (2024) and refer to the interim concept as loss and to the ex post equivalent as regret.
15 We show that a bid that minimizes worst-case loss always exists.
16 The ex post perspective is frequently applied to the analysis of environments with ambiguity (Stoye, 2011; Bergemann and Schlag, 2011). Our interim perspective 

is consistent with standard Bayesian analysis.
17 There are bid distributions in  that put all the mass on bidder 𝑗 bidding zero, i.e., 𝑏𝑗 (𝑞) = 0 for all 𝑞. This effectively reduces the number of bidders so that 𝑛

is merely an upper bound on the number of bidders. Our model can also be understood as featuring (residual) supply uncertainty: let 𝑄 be the upper bound of the 
support of supply and reduce supply through other bidders that demand units at prohibitively high prices, above 𝑣𝑖(0).
18 Savage (1951) also suggests group decision-making as a justification for the minimax principle. In his story group members have different subjective probability 

assessments and the minimax principle seeks to keep the greatest ``violence'' done to anyone’s opinion to a minimum. In contrast, we interpret the minimax as a way 
to defend against ex post complaints.
19 The worst-case utility is always zero if the bidder seeks to maximize the payoff guarantee. Any bid function below value is then optimal. A natural selection is to 

bid value (because it is the only bid function for which no opponent bid would induce a change in the bid function, namely to overbid the opponent slightly). Bidding 
value is neither a good predictor of behavior (cf. the experimental data of Engelmann and Grimm (2009)), nor a sensible bid recommendation because there is no 
point in bidding (at least in the discriminatory auction). Put differently, maxmin expected utility is not robust to complaints about missed opportunities.
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3. Two-unit demand

Before our general analysis, we illustrate our analytical approach in the case in which bidders demand up to two units.20 As in the 
model of Ausubel et al. (2014), bidder 𝑖 has value 𝑣𝑖1 for their first unit and value 𝑣𝑖2 = 𝜌𝑣𝑖1 for their second unit, and submits two 
bids (𝑏𝑖1, 𝑏𝑖2). We assume marginal values are decreasing and non-negative, i.e., 𝑣𝑖1 ≥ 𝑣𝑖2 ≥ 0.21 Lemma 1 in Section 4 reduces the 
interim loss-minimization problem to an ex post regret-minimization problem; therefore, it suffices to study opponent bids instead of 
richer bid distributions. There are three relevant outcomes in an auction in which a bidder demands up to two units: the bidder may 
win zero, one, or two units. And, if a bidder wins 𝑘 ∈ {0,1,2} units, the opponent’s bids can be such that it would have been ex post 
optimal to win 𝑘′ ∈ {0,1,2} units. Thus, for each 𝑘 we find the opponent bids (and 𝑘′) such that bidder 𝑖 leaves the most surplus on 
the table—that is, the opponent bids that maximize bidder 𝑖’s regret conditional on winning 𝑘 units.

3.1. Pay-as-bid auctions

With decreasing marginal values, it is never profitable to bid above value in a pay-as-bid auction. Hence, we restrict attention to 
𝑏𝑖1 ≤ 𝑣𝑖1 and 𝑏𝑖2 ≤ 𝑣𝑖2.

Case 1: zero units. The two highest opponent bids, denoted by 𝑐1 and 𝑐2 (where 𝑐1 ≥ 𝑐2), must be above bidder 𝑖’s bids when bidder 
𝑖 does not win anything: 𝑐2 ≥ 𝑏𝑖1. Let (𝑥)+ = max{0, 𝑥}. The highest possible expected utility given 𝑐1 and 𝑐2 is

max{(𝑣𝑖1 − 𝑐2)+, (𝑣𝑖1 − 𝑐1)+ + (𝑣𝑖2 − 𝑐1)+};

it can be optimal to win one unit by bidding marginally higher than 𝑐2 (the left-hand term), or it can be optimal to win two units by 
having both bids marginally higher than 𝑐1 (the right-hand term). However, if 𝑐2 ≥ 𝑣𝑖1, then it is optimal to not win anything and the 
highest possible expected utility is zero. Maximal regret conditional on winning nothing is therefore

sup 
(𝑐1 ,𝑐2) ∶ 𝑐1≥𝑐2>𝑏𝑖1

[
max

{
(𝑣𝑖1 − 𝑐2)+, (𝑣𝑖1 − 𝑐1)+ + (𝑣𝑖2 − 𝑐1)+

}]
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

highest possible surplus given opponent bids 

− [0].
⏟ ⏟ ⏟

surplus with original bids

Observe that regret cannot be maximized at 𝑐2 ≥ 𝑣𝑖1 because this would lead to zero regret, implying that the original bids were 
optimal. Then regret is decreasing in at least one of 𝑐1 and 𝑐2, and in the worst case (for bidder 𝑖) the opponent’s bids are 𝑐1 = 𝑐2 =
𝑏𝑖1 + 𝜀. Depending on 𝑏𝑖1 and 𝑣𝑖2, the bidder wants to win one or two units and can win those by raising the first bid to 𝑏𝑖1 + 2𝜀
and (if profitable) the second bid to 𝑏𝑖1 + 2𝜀. Put differently, bids are most suboptimal if the bidder could have won as many as they 
wanted at a price just above their first-unit bid. In the limit (𝜀 → 0), worst-case regret conditional on winning zero units equals(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+ .

Case 2: one unit. The bidder wins one unit if 𝑏𝑖1 > 𝑐2 and 𝑐1 > 𝑏𝑖2. Conditional on this outcome, maximal regret is

sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖1>𝑐2 and 𝑐1>𝑏𝑖2

[max
{
𝑣𝑖1 − 𝑐2, (𝑣𝑖1 − 𝑐1)+ + (𝑣𝑖2 − 𝑐1)+

}
]

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
highest possible surplus given opponent bids 

− [𝑣𝑖1 − 𝑏𝑖1].
⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟

surplus with original bids

The highest possible surplus may be attained by winning one or two units (winning nothing cannot be optimal since bids are below 
value). When it is optimal to win a single good, regret is maximized when this can be done at a lower price. In the worst case, 𝑐1 ≥ 𝑣𝑖2
and 𝑐2 = 0, and associated regret is 𝑏1�-i.e., the bidder overpays for the unit they receive. But note that regret in this case is no higher 
than in the case in which the bidder receives two units, and ex post prefers to receive two units.

Then it is sufficient to consider only the possibility that, given 𝑐1 and 𝑐2, bidder 𝑖 still desires to win two units but at a different 
price. In this case, regret decreases in 𝑐1 . In the worst case the opponents’ highest bid is 𝑐1 = 𝑏𝑖2 + 𝜀. The bidder overpays on the first 
unit because a lower first bid would have also been winning, and bids marginally too low on the second unit. We refer to this case as 
underbidding because the bidder bids too little on the second unit. Worst-case regret conditional on winning one unit is[(

𝑣𝑖1 − 𝑏𝑖2
)
+
(
𝑣𝑖2 − 𝑏𝑖2

)]
−
[(

𝑣𝑖1 − 𝑏𝑖1
)]

=
(
𝑏𝑖1 − 𝑏𝑖2

)
+
(
𝑣𝑖2 − 𝑏𝑖2

)
.

Case 3: two units. The bidder wins two units if 𝑏𝑖2 > 𝑐1. Conditional on this outcome, maximal regret is

sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖2>𝑐1

[max
{
(𝑣𝑖1 − 𝑐1) + (𝑣𝑖2 − 𝑐1), 𝑣𝑖1 − 𝑐2

}
] − [(𝑣𝑖1 − 𝑏𝑖1) + (𝑣𝑖2 − 𝑏𝑖2)].

Conditional on winning both units, bids can be suboptimal if they are too high; the bidder overpays on both units if both units 
could be acquired cheaper (for a per-unit price of 𝑐1 + 𝜀) and overpays on the first unit if one unit can be acquired cheaper (for a 
per-unit price of 𝑐2 + 𝜀); as when the bidder received one unit, when bids are below values it cannot be the case that it is ex post 

20 An earlier working version of this paper contains the analysis of the general discrete multi-unit case (Kasberger and Woodward, 2023).
21 We analyze increasing marginal values in Appendix B.
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Fig. 1. First- and second-unit bids in the pay-as-bid and uniform-price auctions, when the bidder demands two units. 

optimal to receive zero units. In the worst case, the two highest opponent bids are (0,0) so that the bidder can reduce their bids to 
(𝜀, 𝜀); in this event worst-case regret equals[(

𝑣𝑖1 − 0
)
+
(
𝑣𝑖2 − 0

)]
−
[(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖2

)]
= 𝑏𝑖1 + 𝑏𝑖2.

Determining optimal bids. The minimax-loss bid balances the regret conditional on the realization of any of the three outcomes: 
underbidding regret conditional on receiving any number of units, and overbidding regret conditional on winning two units. Maximal 
loss is

max
{(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+ , 
(
𝑏𝑖1 − 𝑏𝑖2

)
+
(
𝑣𝑖2 − 𝑏𝑖2

)
, 𝑏𝑖1 + 𝑏𝑖2

}
. (1)

The minimax is attained by equalizing the three expressions, and the unique minimax-loss bid vector in the pay-as-bid auction is

𝑏PAB
𝑖1 =

{
𝑣𝑖1
9 (3 + 2𝜌) if 𝜌 ≥ 3

7 ,
𝑣𝑖1
6 (3 − 𝜌) if 𝜌 < 3

7 ;
and 𝑏PAB

𝑖2 =
𝜌𝑣𝑖1
3 

. (2)

The case distinction is due to the value for the second good being below or above the bid for the first; i.e., the term (𝑣𝑖2 − 𝑏𝑖1)+ in 
Equation (1).

Fig. 1 illustrates the bid function as a function of 𝜌. If 𝜌 = 0, then the minimax bid is 𝑏PAB
𝑖1 = 𝑣𝑖1∕2, which is as in the first-price 

auction for a single good (Kasberger and Schlag, 2024). The bid 𝑏PAB
𝑖1 decreases in 𝜌 for 𝜌 ≤ 3∕7.22 This antitonicity arises because 

increasing 𝜌 in this range increases the loss conditional on receiving a single unit, hence the bid 𝑏𝑖1 falls so that loss is equalized 
across outcomes. To provide more discussion of this antitonicity, suppose 𝜌 is relatively low so that the bidder does not want to buy 
the second good at price 𝑏𝑖1. The bid 𝑏𝑖1 is then found by equalizing the underbidding regret conditional on losing the auction with 
the overbidding regret conditional on winning two units: 𝑣𝑖1 − 𝑏𝑖1 = 𝑏𝑖1 + 𝑏𝑖2. A higher 𝑏𝑖2 increases the level of regret, forcing 𝑏𝑖1
to be lower. Since 𝑏𝑖2 = 𝑣𝑖2∕3 increases in 𝜌, the observed antitonicity follows. Conversely, if 𝜌 is sufficiently high so that the bidder 
wants to buy two units at a price of 𝑏𝑖1, underbidding regret conditional on losing the auction is (1+ 𝜌)𝑣𝑖1 − 2𝑏𝑖1. A marginal increase 
of 𝜌 now increases regret conditional on losing the auction stronger than overbidding regret. Hence, to maintain equivalence between 
overbidding and underbidding regret, the bid 𝑏𝑖1 must increase in 𝜌. It follows that for values of 𝜌 above 3∕7, both bids increase in 
𝜌, though the second bid 𝑏PAB

𝑖2 increases more quickly than 𝑏PAB
𝑖1 . By corollary, the spread between the two bids uniformly decreases 

in 𝜌.

3.2. Uniform-price auctions

As in the pay-as-bid auction, three exhaustive outcomes may maximize loss in the uniform-price auction: the bidder either receives 
zero, one, or two units. We consider these outcomes on a case-by-case basis and study the uniform-price auction with the first rejected 
bid (FRB) or the last accepted bid (LAB) as the market-clearing price.

22 McAdams (2007) provides examples of a uniform-price auction where Bayes-Nash equilibrium bids may decrease in the bidder’s value due to risk aversion and 
affiliated values. Our example concerns the pay-as-bid auction and relies on a distinct rationale.
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3.2.1. First rejected bid uniform-price auction

In the uniform-price auction with the first rejected bid as the market-clearing price, it is known that bidding truthfully on the first 
unit is weakly dominant (Engelbrecht-Wiggans and Kahn, 1998). However, to motivate a selection of a minimax-loss bid we compute 
maximal regret for any undominated bids, 𝑏𝑖𝑗 ≤ 𝑣𝑖𝑗 , 𝑗 = 1,2.

Case 1: zero units. Recall that bidder 𝑖 wins nothing if the second-highest competing bid is above 𝑏𝑖1: 𝑐2 ≥ 𝑏𝑖1. The difference from 
the pay-as-bid auction lies in the payment rule. If bidder 𝑖 were to win one unit, then the first rejected bid would be max{𝑐2, 𝑏𝑖2}. 
Hence, the maximum ex post utility in which bidder 𝑖 wins one unit is associated with setting the second bid equal to zero. If bidder 
𝑖 were to win two units, then the first rejected bid would be 𝑐1. Maximal regret conditional on winning zero units is

sup 
(𝑐1 ,𝑐2) ∶ 𝑐1≥𝑐2>𝑏𝑖1

[max
{
(𝑣𝑖1 − 𝑐1)+ + (𝑣𝑖2 − 𝑐1)+, (𝑣𝑖1 − 𝑐2)+

}
] − [0].

Regret decreases in 𝑐1 and 𝑐2 and is maximized by 𝑐1 = 𝑐2 = 𝑏𝑖1 + 𝜀. Maximal regret is therefore

max
{(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+ ,
(
𝑣𝑖1 − 𝑏𝑖1

)
+

}
.

This case is associated with ``underbidding'' because bidder 𝑖 could win more by raising the first bid marginally, and the second bid 
if profitable.

Case 2: one unit. Recall that the bidder wins one unit if 𝑏𝑖1 > 𝑐2 and 𝑐1 > 𝑏𝑖2. The first rejected bid is max{𝑐2, 𝑏𝑖2}. Conditional on 
this outcome, maximal regret is

sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖1>𝑐2 and 𝑐1>𝑏𝑖2

[max
{
(𝑣𝑖1 − 𝑐2)+, (𝑣𝑖1 − 𝑐1)+ + (𝑣𝑖2 − 𝑐1)+

}
] − [𝑣𝑖1 −max{𝑐2, 𝑏𝑖2}].

Given 𝑐1 and 𝑐2, it can be optimal to win one or two units, but it cannot be optimal to win zero because bids are below value. When 
it is optimal to win one unit, regret equals

sup 
(𝑐1 ,𝑐2)∶𝑏𝑖1>𝑐2 and 𝑐1>𝑏𝑖2

𝑣𝑖1 − 𝑐2 − 𝑣𝑖1 +max{𝑐2, 𝑏𝑖2} = 𝑏𝑖2.

Corresponding worst-case opponent bids are 𝑐1 = max{𝑣𝑖1, 𝑏𝑖1} and 𝑐2 = 0. Bidder 𝑖’s second bid 𝑏𝑖2 sets the market-clearing price so 
that bidder 𝑖 ``overbids'' because they could have won the unit for free.

When winning two units is optimal, regret equals

sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖1>𝑐2 and 𝑐1>𝑏𝑖2

𝑣𝑖1 − 𝑐1 + 𝑣𝑖2 − 𝑐1 − [𝑣𝑖1 −max{𝑐2, 𝑏𝑖2}].

If 𝑐2 > 𝑏𝑖2, then regret is 𝑣𝑖2+𝑐2−2𝑐1. Since regret increases in 𝑐2 and 𝑐1 ≥ 𝑐2, it follows that maximal regret in this case is sup𝑐1>𝑏𝑖2
𝑣𝑖2−

𝑐1. Worst-case regret is 𝑣𝑖2 − 𝑏𝑖2; the corresponding worst-case bids are 𝑐1 = 𝑐2 = 𝑏𝑖2 + 𝜀. If 𝑐2 ≤ 𝑏𝑖2, then regret is 𝑣𝑖2 − 2𝑐1 +
𝑏𝑖2. Regret decreases in 𝑐1 so that the worst-case 𝑐1 equals 𝑏𝑖2 + 𝜀. In any case, if it is optimal to win two units, the regret is 
associated with ``underbidding;'' a marginally higher 𝑏𝑖2 would have been better. Maximal regret conditional on winning one unit is 
max

{
𝑏𝑖2, 𝑣𝑖2 − 𝑏𝑖2

}
.

Case 3: two units. Recall that two units are won if 𝑏𝑖2 > 𝑐1. In this case, the highest rejected bid is always 𝑐1. Hence, the two units 
cannot be won cheaper. Winning nothing cannot be better than two units if bids are below value. If it is optimal to win one unit for 
a transfer of 𝑐2, then regret is

sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖2>𝑐1

[𝑣𝑖1 − 𝑐2] − [𝑣𝑖1 + 𝑣𝑖2 − 2𝑐1] = sup 
(𝑐1 ,𝑐2) ∶ 𝑏𝑖2>𝑐1

2𝑐1 − 𝑐2 − 𝑣𝑖2.

In the worst case, 𝑐2 = 0 and 𝑐1 = 𝑏𝑖2 − 𝜀 so that maximal regret is 2𝑏𝑖2 − 𝑣𝑖2. Bidder 𝑖 ``overbids'' because one unit could have been 
won for free.

Determining optimal bids. Regret is maximized by one of the previous cases and equal to

max
{
(𝑣𝑖1 − 𝑏𝑖1) + (𝑣𝑖2 − 𝑏𝑖1)+, 𝑏𝑖2, 𝑣𝑖2 − 𝑏𝑖2,2𝑏𝑖2 − 𝑣𝑖2

}
. (3)

Regret minimization pins down 𝑏𝑖2 = 𝑣𝑖2∕2. However, in contrast with the pay-as-bid auction, there is no case that involves both 𝑏𝑖1
and 𝑏𝑖2. Consequently, there is no unique bid that minimizes the maximal regret.23 A natural minimax-bid is found ``pointwise'' by 
selecting bids that minimize the maximum of the expressions in which they appear. A truthful first bid 𝑏𝑖1 = 𝑣𝑖1 is then optimal (as 
are marginally lower first bids). The minimax-loss bid is

𝑏FRB
𝑖1 = 𝑣𝑖1 and 𝑏FRB

𝑖2 =
𝜌𝑣𝑖1
2 

. (4)

Below we call this selection the conditional regret minimizing bid.

23 The best-reply correspondence of Bayesian bidders can also be multi-valued. Moreover, multiple equilibria can exist. For example, in the ``collusive'' equilibrium 
with two bidders and units, bidder 𝑖 bids truthfully on the first unit and zero on the second. An alternative equilibrium is that bidder 𝑖 bids some high value 𝑣 for the 
first unit and zero for the second unit.
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We view this selection as natural for three reasons. First, it leads to a bidding strategy that is weakly dominant (Engelbrecht

Wiggans and Kahn, 1998). Second, the selection is unique, serving the purpose of pinning down the bidding strategy. Third, it 
optimizes the entire bidding function also for ``local worst cases''. To elaborate, let 𝑏𝑖1 = 𝑣𝑖1 − 𝜀 and 𝑏𝑖2 = 𝑣𝑖2∕2. Such a bid also 
minimizes maximal regret, which is equal to 𝑣𝑖2∕2. A ``global worst case'' for such a bidding function is that bidder 𝑖 wins one unit 
and pays 𝑏𝑖2, but could have won the unit for free. However, the bidding function does not adequately protect against the situation in 
which bidder 𝑖 wins zero units but could have won at least one with a higher bid on the first unit. The conditional regret is relatively 
minor (e.g., 𝑣𝑖1 − 𝑏𝑖1 = 𝜀) compared to the global maximal regret of 𝑣𝑖2∕2. Nevertheless, it might pay off to minimize maximal loss 
also for ``local worst cases'' instead of only the global ones. Note that such a bid would not necessarily be separable with respect to 
𝑣𝑖1 and 𝑣𝑖2.

3.2.2. Last accepted bid uniform-price auction

There is also not a unique minimax-loss bid in the last accepted bid uniform-price auction. The conditional regret minimizing bid 
equals

𝑏LAB
𝑖1 =

{
1
3𝑣𝑖1 (1 + 𝜌) if 12 ≤ 𝜌,
1
2𝑣𝑖1 otherwise;

and 𝑏LAB
𝑖2 =

𝜌𝑣𝑖1
3 

. (5)

We provide the details in Appendix D.

3.3. Revenue and welfare comparison

We now use the minimax-loss bid functions to compare auction revenue and welfare across the three auction formats. Despite 
the clear ranking of bid levels (cf. Fig. 1), auction outcomes may be ambiguous because different payment rules imply different 
bid functions which induce distinct mappings from bidder values to outcomes. Minimax-loss bids are insensitive to the underlying 
distribution of bidder values, and this distribution therefore induces a degree of freedom which may render cross-mechanism outcome 
comparisons ambiguous. Essentially, the uniform-price formats generate higher revenue when the distribution of values is narrow 
and pay-as-bid generates higher revenue when the distribution of values is wide; this is because in the pay-as-bid auction the winning 
bidders’ payments are independent of opponent competitiveness, while in the FRB uniform-price auction the lack of competition 
affects the price paid.

We illustrate these tradeoffs in the two-bidder, two-unit context of this section.

Example 1. Let there be two bidders and two units for sale.24 The marginal values are flat (i.e., 𝜌 = 1 and 𝑣𝑖2 = 𝑣𝑖1 ≡ 𝑣𝑖). Without 
loss of generality, assume that bidder 1’s marginal value is higher than bidder 2’s marginal value, 𝑣1 ≥ 𝑣2, and let 𝜏 ∈ [0,1] be such 
that 𝑣2 = 𝜏𝑣1.

In the PAB auction, bidder 𝑖 bids ( 59𝑣𝑖,
1
3𝑣𝑖). Bidder 1 wins two units if 13𝑣1 ≥ 5

9 𝜏𝑣1, that is, if and only if 𝜏 ≤ 3
5 . Otherwise, both 

bidders win one unit each. Ex-post revenue in the PAB auction is 89𝑣1 if 𝜏 ≤ 3
5 and 59𝑣1(1 + 𝜏) if 𝜏 > 3

5 .

In the FRB uniform-price auction, bidder 𝑖 bids (𝑣𝑖,
1
2𝑣𝑖). Bidder 1 wins two units if 12𝑣1 ≥ 𝜏𝑣1, that is, if and only if 𝜏 ≤ 1

2 . In this 
case, the highest rejected bid is 𝜏𝑣1 . Otherwise, both bidders win one unit each and the first rejected bid is 𝑣1∕2. Ex-post revenue in 
the FRB uniform-price auction is 2𝜏𝑣1 if 𝜏 ≤ 1

2 and 𝑣1 if 𝜏 > 1
2 .

In the LAB uniform-price auction, bidder 𝑖 bids ( 23𝑣𝑖,
1
3𝑣𝑖). Bidder 1 wins two units if 13𝑣1 ≥ 2

3 𝜏𝑣1, that is, if and only if 𝜏 ≤ 1
2 . In 

this case, the last accepted bid is 13𝑣1. Otherwise, both bidders win one unit each so that the last accepted bid equals 23 𝜏𝑣1. Ex-post 
revenue in the LAB uniform-price auction is 23𝑣1 if 𝜏 ≤ 1

2 and 43 𝜏𝑣1 if 𝜏 > 1
2 .

Fig. 2 depicts ex-post revenue in the three auction formats as a function of 𝜏 . The first observation is that revenue can be highest 
in any auction format. The PAB auction leads to the highest revenue if the second-highest marginal value is relatively low (𝜏 ≤ 4

9 ). 
Bidder 1 wins both objects and revenue is high due to the relatively high first bid. The FRB uniform-price auction maximizes revenue 
among the three auction formats if the second-highest marginal value takes intermediate values ( 49 ≤ 𝜏 ≤ 3

4 ). Revenue is (close to) 
𝑣1, which is higher than (revenue in the neighborhood of) 8𝑣1∕9 in the PAB and 2𝑣1∕3 in the LAB uniform-price auction. Finally, the 
LAB uniform-price auction generates the highest revenue if both bidders have similar values since the last accepted bid is relatively 
high in this case (𝜏 ≥ 3

4 ). The expected revenue of the three auctions can also be ranked analogously according if the bidders’ joint 
value distribution puts sufficient mass on 𝜏 in the respective intervals. ◀

Any auction can also lead to the highest welfare. In the notation of Example 1, it is efficient that the bidder with the highest type 
(𝑣1) wins two units if 𝑣1 + 𝜌𝑣1 ≥ 𝑣1 + 𝜏𝑣1, i.e., if and only if 𝜌 ≥ 𝜏 . Otherwise, in the efficient allocation the two bidders with the two 
highest values each receive one unit. If 𝜌 = 1, it is always efficient that the bidder with the highest value wins both units. The PAB 
auction is efficient if and only if 𝜏 ≤ 3

5 , while the uniform-price auctions are efficient if and only if 𝜏 ≤ 1
2 . It follows that all three 

24 The analysis of the PAB and LAB auctions also applies when there are more than two bidders. However, the first rejected bid might come from the bidder with 
the third highest bid.
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Note: Two bidders and two discrete units for sale. Marginal values are flat. The highest marginal 
value is denoted by 𝑣1; the second-highest marginal value is 𝑣2 = 𝜏𝑣1.

Fig. 2. Ex-post revenue in Example 1. 

auctions are efficient if the distribution of 𝜏 puts all the mass below 12 and equally inefficient if all mass is above 35 . However, if the 
distribution of 𝜏 puts mass on ( 12 , 35 ], then PAB is more efficient than the uniform-price auctions. We note that welfare equivalence in 
the one-unit-to-each case does not contradict the ambiguous revenue ranking discussed above, as welfare measurement only considers 
the extensive margin (whether the ``right'' agent receives the good) while revenue measurement also considers the intensive margin 
(how much they pay).

The following proposition shows that the pay-as-bid auction achieves a weakly higher welfare than the other auctions.

Proposition 1. Let there be two discrete units for sale and 𝑣𝑖2 = 𝜌𝑣𝑖1 for all bidders 𝑖, 0≤ 𝜌 ≤ 1. Suppose bidders play the minimax-loss bids 
in Equations (2), (4), and (5).

• All three auction formats are efficient when it is efficient that the two bidders with the highest values win one unit each.

• When it is efficient that the bidder with the highest value wins both units, the pay-as-bid auction is weakly more efficient than the last 
accepted bid uniform-price auction, which is weakly more efficient than the first rejected bid uniform price auction.

3.4. Comparison to Bayes-Nash equilibrium and design implications

We now compare minimax-loss and Bayes-Nash equilibrium bids and outcomes. We first argue that minimax-loss and BNE bids 
cannot be generally compared; whether one bid curve or the other is more aggressive depends on the steepness of true demand and 
on the level of competition in the auction. An immediate corollary is that auction outcomes cannot be compared unambiguously. 
We therefore cannot say conclusively that an auctioneer should encourage minimax-loss bidding or BNE bidding, to the extent 
such encouragement is possible. Nonetheless, in spite of this lack of comparability we show that minimax-loss bids are qualitatively 
consistent with experimental work, hence auctioneers may have reason to seriously consider the implications of minimax-loss bidding.

The comparison of minimax-loss and BNE bid curves depends on the strength of competition and on the strength of demand. 
Intuitively, when there is little competition in the auction, Bayes-Nash equilibrium bids tend to be lower than bids under maximal 
uncertainty because only Bayesian bidders adjust their bids to the absence of competition. Maximally uncertain bidders are unaware 
that competition is thin and, accordingly, tend to bid higher than in BNE. If there is strong competition in the sense of there being 
many bidders, minimax-loss bids will tend to be lower than Bayes-Nash equilibrium bids because the bid function is independent of 
the number of bidders while BNE bids tend to value as the number of bidders becomes large (Swinkels, 2001).

To demonstrate the role of demand strength, in what follows we hold the number of bidders equal to two. Even under this minimal 
level of competition minimax-loss and BNE bids differ qualitatively and cannot be ranked unambiguously. We show this for pay-as

bid auctions under the assumption that values are distributed uniformly. For the case of flat marginal values (𝜌 = 1), Ausubel et al. 
(2014) show that Bayes-Nash equilibrium bids are flat; that is, each bidder submits two identical bids. This stands in contrast to 
bidding under maximal uncertainty, where the second bid is strictly lower than the first (Equation (2)). With decreasing marginal 
values (0 ≤ 𝜌 < 1), the BNE in the PAB auction is no longer flat (Ausubel et al., 2014) and BNE bids can be higher or lower than those 
under maximal uncertainty, so the bid functions cannot be ranked uniformly. However, as 𝜌 becomes small, there is effectively no 
competition as each bidder demands one of two units. Bayesian bidders know this and therefore bid zero in equilibrium. Maximally 
uncertain bidders do not know that there is no competition and compete more intensely than Bayesian bidders. More formally, both 
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BNE bids converge to zero as 𝜌 → 0, while the first minimax-loss bid converges to the first-price auction minimax-loss bid of 𝑣𝑖1∕2
(Kasberger and Schlag, 2024). In this setting, the bids under maximal uncertainty are higher than in BNE.

Submitted bids also cannot be unambiguously ranked in uniform-price auctions. In the FRB uniform-price auction, Bayes-Nash 
equilibria can be collusive in the sense that the second bid is zero; this can even be the unique BNE (Ausubel et al., 2014; Engelbrecht

Wiggans and Kahn, 1998; Noussair, 1995). In contrast, bidders submit two positive bids under maximal uncertainty because it could 
be that the other bidder has a very low first bid, so the bidder would regret not submitting a positive second bid. In the LAB uniform

price auction, the minimax-loss and BNE bid sometimes share a property called ``separability'' and a relation to the bid in the first-price 
auction. A bid function is separable if the bid for quantity 𝑘 only depends on the marginal value for the 𝑘th unit. Burkett and Woodward 
(2020a) identify a model in which the BNE bid is separable. Moreover, they show that the equilibrium bid for quantity 𝑘 is as in a 
first-price auction with value 𝑣𝑘 . In contrast, the minimax-loss bid (5) is separable only if 𝑣𝑖2 is sufficiently low. In this case, the first 
bid is then also as in a first-price auction. The second, however, is lower than in a first-price auction with value 𝑣𝑖2 .

These qualitative findings—that PAB bids are not flat, and that FRB bids are nonzero for the second unit—align with experimental 
work on multi-unit auctions. Engelmann and Grimm (2009) run laboratory versions of PAB and FRB. Subjects in experimental PAB 
auctions do not use flat bids but bid spreads that are qualitatively consistent with the minimax-loss approach (Engelmann and Grimm, 
2009). In the FRB experiment of Engelmann and Grimm (2009), subjects rarely bid zero on the second item, which is qualitatively 
consistent with the minimax-loss approach but not with the equilibrium predictions.

Finally, auction design implications when facing minimax-loss bidders can be in direct contradiction with design implications 
when facing Bayesian bidders. The existence of zero-revenue Bayes-Nash equilibria suggests that the FRB uniform-price auction 
might not be a good choice in terms of revenue. However, Fig. 2 shows that it leads to the highest revenue among the three auction 
formats when the second-highest value is about half of the highest value. For example, suppose marginal values are constant and 
perfectly correlated with 𝑣2 = 𝑣1∕2 + 𝜀 for 𝜀 positive but small. There clearly exists a zero-revenue equilibrium in the FRB auction,25

but the FRB auction is revenue-optimal among the three auction formats under maximal uncertainty. In this setting, the FRB auction 
is also efficient with maximally uncertain bidders, while the zero-revenue equilibrium is inefficient. Moreover, in a setting nested by 
Proposition 1, Fig. 2 of Ausubel et al. (2014) shows that the PAB auction leads to the lowest expected surplus when 𝜌 is low. We find, 
however, that the PAB auction is weakly welfare-dominant among the three formats.

4. Loss in auctions for homogeneous goods

We now establish general properties of the minimax-loss problem. Under maximal uncertainty, bidders believe every possible 
distribution of opponent bids is feasible. Since degenerate distributions are believed to be feasible and turn out to maximize loss, 
maximum loss is equivalent to maximum regret. This is a consequence of the linearity of bidder preferences and not specific to the 
analysis of auctions or other features of our model.

Lemma 1 (Reduction to maximum regret). Under maximal uncertainty, maximizing loss is equivalent to maximizing regret. That is, for all 
values 𝑣𝑖 and bids 𝑏𝑖,

sup 
𝐵−𝑖∈

𝐿
(
𝑏𝑖;𝐵−𝑖, 𝑣𝑖

)
= sup

𝑏−𝑖
𝑅
(
𝑏𝑖;𝑏−𝑖, 𝑣𝑖

)
.

To simplify the regret maximization problem, we decompose it to the related problem of maximizing conditional regret. Given any 
quantity 𝑞 ∈ [0,𝑄], let 𝑅𝑞

(
𝑏𝑖;𝑣𝑖

)
denote bidder 𝑖’s (maximal) regret conditional on winning 𝑞 units. Given a bid 𝑏𝑖 and an opponent 

bid 𝑏−𝑖, bidder 𝑖’s quantity allocation 𝑞𝑖(𝑏𝑖, 𝑏−𝑖) is deterministic. Since maximum loss is identical to maximum regret, which is derived 
ex post after opponent demand is realized, it follows that maximum loss is the highest conditional regret from receiving any quantity, 
sup𝑏−𝑖 𝑅(𝑏𝑖;𝑏−𝑖, 𝑣𝑖) = sup𝑞 𝑅𝑞(𝑏𝑖;𝑣𝑖). Conditional regret forms the basis of our subsequent analysis.

4.1. Pay-as-bid auctions

To develop intuition for loss maximization in the pay-as-bid auction, consider the potential sources of regret in a canonical single

unit first-price auction. Ex post, bids in single-unit discriminatory auctions are either too high—because the bidder strictly outbids 
the second-highest bidder—or too low—because the bidder underbids the highest bidder, whose bid was below the bidder’s value 
(Kasberger and Schlag, 2024).26 This same intuition is true pointwise in multi-unit pay-as-bid auctions: the bidder frequently would 
prefer to increase their bid for large quantities and decrease their bid for small quantities. We use this observation to pin down 
conditional regret in the pay-as-bid auction.

If bidder 𝑖 submits bid 𝑏𝑖 and obtains quantity 𝑞, they know that the market-clearing price is 𝑝⋆ ∈ [𝑏𝑖
+(𝑞), 𝑏

𝑖(𝑞)], where 𝑏𝑖
+(𝑞) =

lim𝑞′↘𝑞 𝑏𝑖(𝑞′).27 Their regret is at least

25 Bidder 1’s utility from winning two units is 2𝑣1 − 2𝑣1∕2 − 2𝜀 = 𝑣1 − 2𝜀, while it is 𝑣1 when winning one unit for free.
26 When bids are neither too high nor too low, regret is zero. Generally, maximal regret will be nonzero.
27 For notational simplicity we define 𝑏𝑖

+(𝑄) = 0.
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𝑅PAB
𝑞

(
𝑏𝑖;𝑝⋆, 𝑣𝑖

)
=

𝑞

∫
0 

(
𝑏𝑖 (𝑥) − 𝑝⋆

)
𝑑𝑥+

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑝⋆

)
+ 𝑑𝑥.

That is, their regret is at least their overpayment for units they received, plus the utility foregone by underbidding for units they value 
above the market-clearing price. This regret would be realized if, for example, all opponents submitted flat bids at the price 𝑝⋆ . This 
expression is strictly decreasing in 𝑝⋆; hence, bidder 𝑖’s conditional regret is at least

𝑅PAB
𝑞

(
𝑏𝑖;𝑣𝑖

)
=

𝑞

∫
0 

(
𝑏𝑖 (𝑥) − 𝑏𝑖 (𝑞)

)
𝑑𝑥+

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏𝑖 (𝑞)

)
+ 𝑑𝑥, (6)

since 𝑏𝑖
+(𝑞) = 𝑏𝑖(𝑞) for right-continuous bid functions. Because 𝑅PAB

𝑞 is the regret the bidder has in the case in which they wish 
they had bid slightly more for larger quantities, we refer to 𝑅PAB

𝑞 as underbidding regret. The second term can also be written as 

∫ 𝑣𝑖−1 (𝑏𝑖(𝑞))
𝑞 𝑣𝑖(𝑥) − 𝑏𝑖(𝑥)𝑑𝑥, where 𝑣𝑖−1 is the right inverse of 𝑣𝑖 and at most equal to 𝑄:

𝑣𝑖−1 (𝑦) = sup{𝑥 ∈ [0,𝑄]  ∶ 𝑣𝑖(𝑥) ≥ 𝑦}.

Alternatively, bidder 𝑖 might be able to obtain the same allocation by bidding just above zero for all units. This will be the case 
when their opponents, in aggregate, submit extremely high bids for 𝑄− 𝑞 units and zero bids for all remaining units. In this case all 
nonzero payment is wasted, and regret is

𝑅
PAB

𝑞

(
𝑏𝑖;𝑣𝑖

)
=

𝑞

∫
0 

𝑏𝑖 (𝑥)𝑑𝑥.

Because 𝑅
PAB

𝑞 is the regret the bidder has in the case in which they wish they had bid nearly zero for all units, we refer to 𝑅
PAB

𝑞 as 
overbidding regret.

The conditional regret for quantity 𝑞 is

𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖) = max

{
𝑅

PAB

𝑞

(
𝑏𝑖;𝑣𝑖

)
,𝑅PAB

𝑞

(
𝑏𝑖;𝑣𝑖

)}
.

Since 𝑅PAB
𝑄

(𝑏𝑖;𝑣𝑖) = 𝑅
PAB

𝑄 (𝑏𝑖;𝑣𝑖) and 𝑅
PAB

𝑞 (𝑏𝑖;𝑣𝑖) is weakly increasing in 𝑞, maximum loss is the supremum of underbidding regret, 
taken over all quantities 𝑞.

Lemma 2 (Maximum loss in pay-as-bid). In the pay-as-bid auction, maximal loss given bid 𝑏𝑖 is

sup
𝑞

𝑅PAB
𝑞

(
𝑏𝑖;𝑣𝑖

)
.

A proof is given in Appendix A.2.

4.2. Uniform-price auctions

We first establish expressions for underbidding and overbidding regret in the uniform-price auction, in line with our analysis of 
pay-as-bid auctions. The market-clearing price is 𝑝⋆ ∈ {𝑝LAB, 𝑝FRB}. In spite of the potentially large difference in market prices, the 
strategic analyses of FRB and LAB differ only in the discrete multi-unit case (Section 3).

In the uniform-price auction, bids above the market-clearing price are relevant only to the extent that they guarantee a unit is 
awarded; they do not otherwise affect the bidder’s utility. This is in contrast to the pay-as-bid auction, where bids above the market

clearing price are paid whenever the unit is awarded. When bidder 𝑖 receives quantity 𝑞, the market-clearing price must be 𝑝⋆ = 𝑏𝑖(𝑞). 
Bidder 𝑖’s underbidding regret is

𝑅UPA
𝑞

(
𝑏𝑖;𝑣𝑖

)
=

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏𝑖 (𝑞)

)
+ 𝑑𝑥.

As in the pay-as-bid auction, underbidding regret accounts not only for the fact that the bidder might regret not bidding just above 
the market-clearing price, but also for the fact that the bidder might affect their own transfer.

Alternatively, bidder 𝑖 might be able to obtain the same allocation by bidding just above zero for all units. This will be the case 
when their opponents submit high bids for 𝑄 − 𝑞 units and submit zero bids for all remaining units. In this case all nonzero bids are 
wasted, and regret is higher the higher is the market-clearing price, hence overbidding regret is

𝑅
UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
= 𝑞𝑏𝑖 (𝑞) .



Journal of Economic Theory 226 (2025) 106008

12

B. Kasberger and K. Woodward 

This differs from overbidding regret in the pay-as-bid auction, 𝑅
PAB

𝑞 , since in the uniform-price auction only the marginal bid is 
relevant.

The conditional regret for any quantity 𝑞 is

𝑅UPA
𝑞

(
𝑏𝑖;𝑣𝑖

)
=max

{
𝑅UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
,𝑅

UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)}
.

Because maximum loss is equal to maximum regret, and ex post regret is obtained at some allocation, maximal loss may be identified 
with maximizing conditional regret.

Lemma 3 (Maximum loss in uniform-price). In the uniform-price auction, maximal loss given bid 𝑏𝑖 is

sup
𝑞

𝑅UPA
𝑞

(
𝑏𝑖;𝑣𝑖

)
.

5. Unconstrained minimax-loss bids

We now characterize minimax-loss bids when the auctioned good is perfectly divisible. In contrast with the next section, the bidders 
are not constrained in their number of bids; they can submit any weakly decreasing, weakly positive, continuous bid functions. At 
the end of the section, we compare the minimax-loss bid functions to those that form a BNE and discuss design implications.

5.1. Pay-as-bid auctions

Recall that Lemma 2 states that loss is maximized by maximizing underbidding regret. To minimize the highest underbidding 
regret across all quantities 𝑞, observe that underbidding regret for quantity 𝑞 increases in the bids for quantities 𝑞′ < 𝑞, decreases 
in the bid for quantity 𝑞, and is unaffected by the bids for quantities 𝑞′′ > 𝑞. It follows that if 𝑏𝑖 is an optimal bid function, then 
underbidding regret must be constant at all quantities 𝑞.

Lemma 4 (Equal conditional regret in pay-as-bid). If 𝑏𝑖 is a minimax-loss bid function in the pay-as-bid auction, then 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖) =

𝑅PAB
𝑞′

(𝑏𝑖;𝑣𝑖) for all 𝑞, 𝑞′ ∈ [0,𝑄].

Lemma 4 gives a straightforward method for computing minimax-loss bids: minimize conditional regret for any quantity, subject 
to equal conditional regret across all quantities. Although computationally straightforward, optimal bids do not admit a general 
analytical form. The formula for conditional regret contains an integral over all units which are valued more than a given bid, but 
the range of integration depends not only on the bidder’s values but also on the prospective bid, which complicates the relationship 
between bid and loss.

The equal conditional regret condition requires the derivative of conditional regret to equal zero, which leads to the differential 
equation in the following theorem. Regarding the boundary condition, regret conditional on receiving the maximum possible allo

cation is ∫ 𝑄
0 𝑏𝑖(𝑥)𝑑𝑥. The fundamental theorem of differential equations implies that solutions to the system cannot cross, hence the 

bid for quantity 𝑄 must be minimal.

Theorem 1 (Unconstrained pay-as-bid bids). The unique minimax-loss bid in the unconstrained pay-as-bid auction, 𝑏PAB, solves

𝑣𝑖 (𝑞) − 𝑏PAB (𝑞) = −𝑣𝑖−1 (𝑏PAB (𝑞)
) 𝑑𝑏PAB

𝑑𝑞 
(𝑞) , s.t. 𝑏PAB (𝑄) = 0. (7)

The minimax-loss bid is strictly below marginal values and strictly decreasing in quantity 𝑞.

If 𝑣𝑖(𝑄) ≥ 1 
𝑄
∫ 𝑄
0 𝑣𝑖(𝑥)𝑒−

𝑥 
𝑄 𝑑𝑥, then differential equation (7) can be solved analytically and the minimax-loss bid in the unconstrained 

divisible-good pay-as-bid auction equals

𝑏PAB(𝑞) = 1 
𝑄

𝑒
𝑞
𝑄

𝑄 

∫
𝑞

𝑣𝑖(𝑥)𝑒−
𝑥 
𝑄 𝑑𝑥. (8)

The differential equation defining minimax-loss bids in the pay-as-bid auction is similar to the first-order condition defining 
best responses in a standard Bayes-Nash equilibrium; see, e.g., Hortacsu and McAdams (2010), Woodward (2021), and Pycia and 
Woodward (2025). The distinction is that in Bayes-Nash equilibrium the first-order condition contains probabilistic effects—increasing 
the bid for a particular quantity increases the probability that this quantity is received—while the differential equation in Theorem 1
does not. Intuitively, this is because regret is an ex post concept.

The minimax-loss bid is unique for any marginal value function. Uniqueness simplifies the estimation of bidders’ private values if 
one believes that observed (continuous) bid data is generated by bidders playing the minimax-loss bids under maximal uncertainty. 
In this case, one can infer bidder 𝑖’s values from the first-order condition in Equation (7). In contrast to the approach relying on BNE 
equilibrium as the data-generating model, estimating values from minimax-loss bids does not require the difficult estimation of the 
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(opponent) bid distribution (Hortacsu and McAdams, 2010). From a normative perspective, a unique bid is attractive as it saves one 
from further assessing the relative merits of all minimax-loss bids.

The tractability of the minimax-loss bid stands in stark contrast to the typical intractability of the BNE in the pay-as-bid auction. As 
discussed in the introduction, BNE characterizations exist only in relatively simple (usually complete information or one-parameter) 
economic settings. Theorem 1 provides a closed-form solution for the minimax-loss bidding function for sufficiently flat marginal 
values. The following example illustrates this case. On the other hand, it is relatively straightforward to numerically compute minimax

loss bids.

Example 2. Let 𝑣(𝑞) = 𝜃− 𝜌 ⋅ 𝑞, where 0≤ 𝜌 ≤ 𝜃∕(2𝑄); the bidder has flat marginal values if 𝜌 = 0 and (non-satiated) quadratic utility 
if 𝜌 > 0. The bid function in Equation (8) equals

𝑏PAB(𝑞) = 𝜃 − 𝜌𝑞
⏟ ⏟ ⏟
=𝑣(𝑞) 

−𝜌𝑄− (𝜃 − 2𝜌𝑄)𝑒
𝑞
𝑄
−1

.

The upper bound 𝜌 ≤ 𝜃∕(2𝑄) guarantees that marginal values are sufficiently flat: 𝑣(𝑄) ≥ 𝑏PAB(0). In this case, 𝑣−1(𝑏PAB(𝑞)) = 𝑄 for 
any 𝑞 and Equation (7) can be solved analytically. The bidding function reveals that bidders ``shade'' their marginal values. The 
bidding function is non-linear in 𝑞 unless 𝜃 = 2𝜌𝑄. In the latter case, 𝑏PAB(𝑞) = 𝜃

2𝑄 (𝑄− 𝑞). ◀

5.2. Uniform-price auctions

We now analyze the unconstrained uniform-price auction. Following Lemma 3, maximum loss is

𝐿UPA
(
𝑏𝑖;𝑣𝑖

)
= sup

𝑞
𝑅UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
= sup

𝑞
max

{
𝑅UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
,𝑅

UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)}
.

That is, maximum loss is a maximum over conditional regrets, which are defined as the higher of overbidding and underbidding 
regrets for quantity 𝑞. Importantly, the bid for quantity 𝑞 only appears in the conditional regrets for quantity 𝑞: 𝑅UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
and 

𝑅
UPA

𝑞

(
𝑏𝑖;𝑣𝑖

)
. Since 𝑅UPA

𝑞 is decreasing in 𝑏𝑖(𝑞) and 𝑅
UPA

𝑞 is increasing in 𝑏𝑖(𝑞), if 𝑏𝑖 is a minimax-loss bid function, then there must be 

some quantity 𝑞 so that 𝑅UPA
𝑞 (𝑏𝑖;𝑣𝑖) = 𝑅

UPA

𝑞 (𝑏𝑖;𝑣𝑖). Moreover, regret minimization pins down the bids only for quantities for which 
conditional regret is maximal. For other quantities, conditional regret minimization leaves the bids (partially) indeterminate. The 
following proposition is immediate.

Proposition 2 (No unique optimal bid in uniform-price). There is not a unique minimax-loss bid in the unconstrained uniform-price auction.

The partial indeterminacy can be illustrated by two iso-loss curves. Given loss 𝐿, the upper iso-loss curve is 𝑐(⋅;𝐿) such that 
𝑞𝑐(𝑞;𝐿) = 𝐿, and the lower iso-loss curve is 𝑐(⋅;𝐿) such that ∫ 𝑄

𝑞 (𝑣𝑖(𝑥) − 𝑐(𝑞;𝐿))+𝑑𝑥 = 𝐿. The bid 𝑏(𝑞) = 𝑐(𝑞;𝐿) induces overbidding 
loss which is constant in quantity, and the bid 𝑏(𝑞) = 𝑐(𝑞;𝐿) induces underbidding loss which is constant in quantity.28 Fig. 3 illustrates 
the two iso-loss curves. The upper iso-loss curve is always a hyperbola; the lower iso-loss curve depends on marginal values. Bids 
above the upper iso-loss curve induce loss above 𝐿 by inducing overbidding regret above 𝐿, and bids below the lower iso-loss curve 
induce loss above 𝐿 by inducing underbidding regret above 𝐿. It follows that the minimax-loss bid must lie entirely between the 
upper and lower iso-loss curves.

Fig. 3 illustrates the upper and lower iso-loss curves for a loss-level equal to minimax loss. In the unconstrained case the upper 
and lower iso-loss curves are tangent to each other. The bids at the points of tangency are uniquely determined and equal to the 
conditional regret minimizing bids. In the example depicted in the figure, there is a single point of tangency 𝑞. Other bids are only 
partially determined; any bid must be below the upper iso-loss curve and above the lower iso-loss curve. In the figure any decreasing 
bidding function in the shaded area is a minimax bid. All minimax bidding functions agree at 𝑞.

The multiplicity of minimax-loss bids vanishes when strengthening the decision criterion similar to requiring subgame perfection in 
Nash equilibria of extensive form games. Recall that the multiplicity arises because regret is globally maximized at a single quantity 
𝑞 (as in Fig. 3). Hence, if player 𝑖 plays any minimax-loss strategy, any worst-case bid distribution is such that bidder 𝑖 wins 𝑞. 
Strengthening the decision criterion to off-path robustness then requires that even if non-worst-case quantity 𝑞 ≠ 𝑞 is won, regret 
conditional on winning 𝑞 is minimized. More generally, the perfection requirement is that even in outcomes that do not arise in 
the worst case, the player minimizes conditional regret. In our case, a conditional regret minimizing strategy minimizes the larger of 
overbidding regret for quantity 𝑞 and underbidding regret for quantity 𝑞. Since regret is maximized by conditional regret for some 
quantity, a conditional regret-minimaxing bid is a minimax-loss bid and hence a selection of the minimax-loss correspondence.

Definition 1. The minimax-loss bid 𝑏𝑖 is a conditional regret minimizing bid if 𝑅UPA
𝑞 (𝑏𝑖;𝑣𝑖) = 𝑅

UPA

𝑞 (𝑏𝑖;𝑣𝑖) for all 𝑞 ∈ [0,𝑄].

28 The same logic does not apply to the pay-as-bid auction, since overbidding regret is monotonically increasing in quantity.
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𝑐(𝑞;𝐿⋆)
𝑐(𝑞;𝐿⋆)

0 𝑞

𝑞

𝑏

𝑐(𝑞;𝐿⋆)
𝑐(𝑞;𝐿⋆)

Fig. 3. Iso-loss curves of unconstrained underbidding and overbidding regret in the uniform-price auction. 

The appeal of conditional regret minimizing bids is that any bid 𝑏𝑖(𝑞) is justifiable ex post. If another minimax bid was chosen so 
that the bid for quantity 𝑞 was below the respective conditional regret minimizing bid for that unit, then after winning 𝑞 units, the 
case can be made that this bid was too low as it would have been profitable to win more units. Only the conditional regret minimizing 
bid does not allow such complaints as the regret of paying too much for 𝑞 units serves as a defense.

Conditional regret minimization requires

𝑞𝑏UPA (𝑞) =

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏UPA (𝑞)

)
+ 𝑑𝑥

for all 𝑞 ∈ [0,𝑄]. The conditional regret minimizing bid is unique because overbidding regret increases in bid while underbidding 
regret decreases in bid.

Theorem 2 (Conditional regret minimizing bid in unconstrained uniform-price auction). In the unconstrained uniform-price auction, there is 
a unique conditional regret minimizing bid, 𝑏UPA, and this bid solves

𝑞𝑏UPA (𝑞) =

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏UPA (𝑞)

)
+ 𝑑𝑥, ∀𝑞 ∈ [0,𝑄].

The theorem implies that 𝑏UPA(0) = 𝑣𝑖(0), i.e., it is optimal to bid value for the ``first unit.'' Moreover, it is optimal to bid 0 for 𝑄: 
𝑏UPA(𝑄) = 0.

Although the bidding function of Theorem 2 cannot be compared to all Bayes-Nash equilibria of the uniform-price auction, it is 
apparent that it does not resemble ``collusive'' low-revenue equilibria that are frequently discussed in the literature (Ausubel et al., 
2014; Marszalec et al., 2020).29 Indeed, only the bid on the last unit (𝑄) is zero in a conditional regret minimizing strategy under 
maximal uncertainty, while many bids are zero in the canonical low-revenue Bayes-Nash equilibrium.

As in the pay-as-bid auction (Example 2), there are convenient expressions for the minimax-loss bids in the uniform-price auction 
when marginal utility is flat or linear.

Example 3. Let 𝑣(𝑞) = 𝜃 − 𝜌 ⋅ 𝑞, where 0 ≤ 𝜌 ≤ 𝜃∕𝑄. The marginal value function is as in Example 2, with the exception that 𝜌 can 
now take larger values; the new constraint on 𝜌 ensures that the utility function is non-satiated on [0,𝑄]. We distinguish two cases. 
In the first case, 𝑣−1(𝑏(𝑞)) is less than 𝑄, which is true for 𝑞 close to 0 (because these bids are close to 𝑣(0)). The conditional regret 
minimizing bid then solves

𝑏 ⋅ 𝑞 =

𝜃−𝑏
𝜌 

∫
𝑞

𝜃 − 𝜌𝑥− 𝑏𝑑𝑥.

29 The existence of collusive-seeming Bayes-Nash equilibria is linked to the absence of supply uncertainty (Klemperer and Meyer, 1989; Burkett and Woodward, 
2020b). See footnote 17 for an interpretation of supply uncertainty in our model.
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In the second case, 𝑣−1(𝑏(𝑞)) equals 𝑄, which holds for 𝑞 close to 𝑄 (since these bids are close to 0). The conditional regret minimizing 
bid then solves

𝑏 ⋅ 𝑞 =

𝑄 

∫
𝑞

𝜃 − 𝜌𝑥− 𝑏𝑑𝑥.

The cutoff 𝑞 between the two cases is such that 𝑣(𝑄) = 𝑏UPA(𝑞). Taken together, the conditional regret minimizing bid is

𝑏UPA(𝑞) =
⎧⎪⎨⎪⎩

𝜃 −
√

𝑞𝜌(2𝜃 − 𝑞𝜌) if 0 ≤ 𝑞 ≤ 𝜃−
√

𝜃2−𝜌2𝑄2

𝜌 
(𝑄−𝑞)(2𝜃−𝜌(𝑞+𝑄))

2𝑄 else.

The bid is linear in 𝑞 only if 𝜌 = 0. In this case, 𝑏UPA(𝑞) = 𝜃(𝑄−𝑞)
𝑄 . ◀

5.3. Comparison of auction formats

We now compare the minimax-loss bids across auction formats. Previous theoretical work has identified uniform-price bids as 
more elastic (i.e., steeper) than pay-as-bid bids (Malvey and Archibald, 1998; Ausubel et al., 2014; Pycia and Woodward, 2025) in 
the Bayesian paradigm. This results from the significant demand-shading incentives for small quantities in the pay-as-bid auction�-

where bids for small quantities are paid for all larger quantities—and the significant demand-shading incentives for large quantities 
in the uniform-price auction—where bids are paid times the quantity for which they are offered. This intuition extends to the loss

minimization context, provided restriction is made to conditional regret-minimizing bids in the uniform-price auction. Define the 
average slope of the bid 𝑏 to be 𝛼 = (𝑏(0) − 𝑏(𝑄))∕𝑄.

Comparison 1 (Uniform-price bids above pay-as-bid bids). The unique conditional regret-minimizing bid in the uniform-price auction is 
higher and on average steeper than the unique minimax-loss bid in the pay-as-bid auction: 𝑏UPA ≥ 𝑏PAB and 𝛼UPA ≥ 𝛼PAB.

Although conditional regret minimizing bids in the uniform-price auction are above the unique minimax-loss bid in the pay-as

bid auction, this is not the case for all selections of minimax-loss bids in the uniform-price auction. In the uniform-price auction, 
underbidding regret for large quantities is necessarily small: uniform pricing implies there is no wedge for overpayment (as there is 
in the pay-as-bid auction), and there is little utility foregone by not receiving a small number of units. Since conditional regret is the 
larger of overbidding and underbidding regret, and overbidding regret is increasing in bid, for large quantities there is a conditional 
regret-minimizing bid which is equal to zero; this zero bid is below the strictly positive minimax-loss bid in the pay-as-bid auction.

Comparison 2 (Semi-comparability of optimal bids). If 𝑏UPA is a minimax-loss bid in the unconstrained uniform-price auction, then 𝑏UPA ≰

𝑏PAB. However, there is a minimax-loss bid 𝑏UPA in the unconstrained uniform-price auction such that 𝑏UPA ≱ 𝑏PAB.

The comparisons of the bid functions imply that the auctioneer’s revenues cannot be generally compared across the two auction 
formats. The uniform-price auction will lead to higher revenue when there are many similar bidders that all win a small quantity; 
this follows from Comparison 1. On the other hand, when the value distribution is such that a single bidder wins a large quantity, 
then price discrimination in the pay-as-bid auction will yield to higher revenue. These arguments establish the ambiguous revenue 
ranking.

Comparison 3 (Ambiguous revenue). Depending on the joint value distribution, both expected and ex post revenues can be higher in either 
auction format.

While revenue cannot be ranked across auction formats, bidder loss is uniformly lower in the uniform-price auction than in the 
pay-as-bid auction. The existence of multiple minimax-loss bids in the uniform-price auction does not affect this comparison, because 
even when some bids are not uniquely defined, the level of minimax loss is.

Comparison 4 (Minimax loss). In the unconstrained case, minimax loss is lower in the uniform-price auction than in the pay-as-bid auction,

sup 
𝐵−𝑖∈

𝐿UPA
(
𝑏UPA;𝐵−𝑖, 𝑣𝑖

) ≤ sup 
𝐵−𝑖∈

𝐿PAB
(
𝑏PAB;𝐵−𝑖, 𝑣𝑖

)
.

What are the implications of one mechanism having lower minimax loss than another? Suppose a bidder can obtain costly infor

mation about the other bidders’ behavior; this information will shrink the set of possible bid distributions . The bidder will tend 
to acquire more information when the subsequent auction mechanism yields higher minimax loss. Thus Comparison 4 implies that 
bidders in the pay-as-bid auction may obtain more costly information than bidders in the uniform-price auction.
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5.4. Comparison to Bayes-Nash equilibrium

To situate our results in the literature, we compare bids under maximal uncertainty to those in Bayes-Nash equilibrium in the 
divisible-good framework of Ausubel et al. (2014). In this model, bidders have symmetric linear marginal values 𝑣(𝑞;𝜃) = (𝜃 − 𝜌𝑞)+, 
𝜌 > 0, and aggregate supply is distributed according to a Pareto distribution with cumulative distribution function 𝐹 given by 𝐹 (𝑄) =

1 − (1 + 𝜉𝑄∕(𝜎𝑛))−
1
𝜉 , where 𝜉 is the shape parameter and 𝜎𝑛 is the scale parameter. Equilibrium bids in the uniform-price and 

pay-as-bid auctions are 𝑏UPA
BNE

and 𝑏PAB
BNE

, respectively, where

𝑏UPA
BNE

(𝑞) = 𝜃 − 𝑛− 1
𝑛− 2

𝜌𝑞 and 𝑏PAB
BNE

(𝑞) = 𝜃 − (𝑛− 1)𝜌 
𝑛(1 − 𝜉) − 1

(
𝑞 + 𝑛 

𝑛− 1
𝜎
)

.

The equilibrium in the uniform-price auction exists only if 𝑛 > 2 and in the pay-as-bid auction only if 𝜉 < (𝑛−1)∕𝑛. For the pay-as-bid 
auction we assume that 𝑄 has bounded support, which is the case if 𝜉 < 0. Let 𝑄 denote the upper bound of support. Equilibrium 
bids in the uniform-price auction constitute an ex-post equilibrium (cf. Klemperer and Meyer (1989)), while equilibrium bids in 
the pay-as-bid auction vary with the distribution of random supply. The maximum positive-value quantity 𝑞∗ = 𝜃∕𝜌 will feature 
prominently in our analysis. Let 𝑏PAB

MML
denote the unique minimax-loss bid in the pay-as-bid auction and 𝑏UPA

MML
the unique conditional 

regret minimizing bid in the uniform-price auction.

5.4.1. Comparison of bids

In the uniform-price auction, bids under maximal uncertainty are below bids in BNE for small quantities, and may be above bids 
in BNE for large quantities. Bayesian bidders know that competitive pressure is high when there are many bidders or when marginal 
values are flat. This information leads bids to be close to value in the BNE while such information is unknown under maximal 
uncertainty.

Proposition 3 (Bids in UPA are often more aggressive in Bayes-Nash equilibrium). Either 𝑏UPA
BNE

(𝑞) ≥ 𝑏UPA
MML

(𝑞) for all 𝑞 ∈ [0,𝑄], or there is a 
unique 𝑞 such that 𝑏UPA

BNE
(𝑞) > 𝑏UPA

MML
(𝑞) for all 𝑞 ∈ (0, 𝑞) and 𝑏UPA

BNE
(𝑞) < 𝑏UPA

MML
(𝑞) for all 𝑞 ∈ (𝑞,𝑄). In either case, when 𝜌 is sufficiently low, 

then 𝑏UPA
BNE

(𝑞) > 𝑏UPA
MML

for all 𝑞 ∈ (0,𝑄). As 𝑛 becomes large, 𝑞 → 𝑄.

Importantly, equilibrium bids in the uniform-price auction under maximal uncertainty are unaffected by the number of bidders 
𝑛. Since equilibrium bids become truthful in the Bayes-Nash equilibrium of the uniform-price auction as the number of bidders 
approaches infinity, in large markets the auctioneer may benefit from inducing BNE behavior where feasible30; of course, this will 
not be true if bidders play a tacitly collusive equilibrium as in the two-unit case.

With regard to the pay-as-bid auction, a general comparison is hindered by the complex dependency of BNE bids on the full 
distribution of aggregate quantity, while bids under maximal uncertainty depend only on the maximum quantity 𝑄. Nonetheless, we 
observe the following.

Proposition 4 (Bids in PAB are often more aggressive in Bayes-Nash equilibrium). When 𝜌 is sufficiently small, then 𝑏PAB
BNE

(𝑞) > 𝑏PAB
MML

(𝑞) for 
all 𝑞 < 𝑞∗. If 𝑄∕𝑛 < 𝑞∗, then 𝑏PAB

BNE
(𝑞) > 𝑏PAB

MML
(𝑞) for all 𝑞 > 𝑄∕𝑛.

As observed in Pycia and Woodward (2025), BNE bids will exceed values for unobtainable quantities (those above 𝑄∕𝑛). These 
bids are dominated by bidding value, implying that the BNE of the pay-as-bid auction is in dominated strategies. The minimax-loss 
bid is undominated.

5.4.2. Comparison of equilibrium outcomes

We now compare outcomes under maximal uncertainty to those in Bayes-Nash equilibrium. In a fixed context it is reasonable 
to expect strategies from only one of maximal uncertainty or BNE; comparison of equilibrium outcomes addresses the question of 
whether the auctioneer may benefit from driving behavior toward one solution concept or another. For example, if the auctioneer 
expects bidders to behave as if under maximal uncertainty, the auctioneer may be able to release credible information about the 
auction environment to steer bidders toward BNE strategies. We show below that this will generally be optimal in homogeneous 
environments.

We handle each auction format in turn. For pay-as-bid, recall that the supply-optimization results of Pycia and Woodward (2025) 
imply that when marginal values are linear, optimal revenue in the pay-as-bid auction is equal to half the area under the bidders’ 
true demand curves.

Corollary 1 (Revenue in optimized pay-as-bid, Pycia and Woodward (2025)). When bidders have symmetric linear marginal values, 𝑣𝑖(𝑞) =
(𝜃 − 𝜌𝑞)+, then the revenue generated in the Bayes-Nash equilibrium of an optimized pay-as-bid auction is 𝜋PAB = 𝜃∕4𝜌.

30 Although Proposition 3 is stated and proved in the model of Ausubel et al. (2014), the results of Swinkels (2001) imply that the Proposition generalizes to 
uniform-price auctions in general.
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We now show that under maximal uncertainty even an optimized pay-as-bid auction generates less revenue than in the optimal 
Bayes-Nash auction. First, note that loss is increasing in aggregate quantity: for aggregate quantity 𝑄 either 𝑣(𝑄) = 0 and increasing 
supply has no impact on loss, or 𝑣(𝑄) > 0 and increasing supply, holding bids fixed, will increase loss for large quantities. Since 
Theorem 1 implies that, under maximum uncertainty, the total area under the bid curve is equal to loss, it follows that revenue is 
maximized when aggregate supply is as large as possible; henceforth we will take supply to be infinite. This implies the following 
revenue comparison.

Proposition 5 (Revenue comparison of optimized pay-as-bid). When aggregate supply is set to maximize revenue, Bayes-Nash equilibrium 
raises strictly greater expected revenue than maximal uncertainty.

It is straightforward to establish Proposition 5 by graphical contradiction. Because marginal values are linear, optimal BNE per

capita revenue in the pay-as-bid auction is half the area under the bidder’s true demand curve. In the pay-as-bid auction under maximal 
uncertainty, loss is constant across all possible allocations (Theorem 1). Loss at the maximum allocation is the area under the bid 
curve, which is the maximum obtainable revenue. Then if revenue is to be higher under maximal uncertainty than in BNE, loss must 
be at least half the area under the bidder’s marginal value curve. Since loss is constant for all units, loss is equal to ∫ 𝑄

0 (𝑣(𝑞)−𝑏(0))+𝑑𝑞; 
that is, the initial bid 𝑏(0) is set so that half of the area under the bidder’s marginal value curve is above 𝑏(0), and by implication 
half is below 𝑏(0). But since bids are strictly decreasing where marginal values are positive and bounded above by 𝑣(⋅), it follows that 
the area under the bid curve is ∫ 𝑄

0 𝑏(𝑞)𝑑𝑞 < ∫ 𝑄
0 min{𝑏(0), 𝑣(𝑞)}𝑑𝑞. Then revenue under maximal uncertainty is less than half the area 

under the bidder’s marginal value curve, and hence less than revenue in BNE.

Proposition 5 implies that if the auctioneer has sufficient information to optimize supply in a pay-as-bid auction, they should 
release this information if they may do so credibly. The following proposition implies that the same conclusion holds for the uniform

price auction.

Proposition 6 (Revenue comparison of optimized uniform-price). When aggregate supply is set to maximize revenue, Bayes-Nash equilibrium 
raises strictly greater expected revenue than maximum uncertainty.

Maximal uncertainty is the revenue-optimal informational extreme when bidders play a collusive BNE in the uniform-price auction. 
In this case, the auctioneer’s optimal information policy is not to reveal any information about past bidding.

6. Extension: bidpoint-constrained minimax-loss bids

In practice bidders are frequently constrained from submitting a distinct bid for each quantity. For example, bidders can submit 
up to 10 bidpoints in Czech treasury auctions (Kastl, 2011) or 40 steps in the Texas electricity market (Hortaçsu et al., 2019). We 
now consider the case in which bidder 𝑖 can submit up to 𝑀 bid points, {(𝑞𝑖𝑘, 𝑏𝑖𝑘)}𝑀

𝑘=1, where 𝑞𝑖𝑘 ≤ 𝑞𝑖𝑘+1 and 𝑏𝑖𝑘 ≥ 𝑏𝑖𝑘+1 for all 𝑘. 
The implied bid function is a step function

𝑏̂𝑖 (𝑞) =

{
𝑏𝑖𝑘 if 𝑞𝑘−1 ≤ 𝑞 < 𝑞𝑘,

0 if 𝑞 = 𝑄,

where 𝑞0 = 0. Importantly, the quantities at which bids are submitted are a choice variable for the bidder. In this section we summarize 
the findings; detailed arguments are found in Appendix C.

6.1. Pay-as-bid auctions

As in the unconstrained case, the minimax-loss bid in the bidpoint-constrained pay-as-bid auction equates underbidding regret 
across all units. The minimax-loss bid is then found by solving a constrained optimization problem. Intuitively, the bidder minimizes 
their maximum payment subject to equal conditional regret across all outcomes. We illustrate the bidding function for the case in 
which the bidder has flat marginal values.

Example 4 (Pay-as-bid with flat marginal values). Suppose bidder 𝑖’s marginal value is flat, 𝑣𝑖(𝑞) = 𝜃 for all 𝑞. The constrained loss 
optimization problem is

min
𝑞′ ,𝑏′

(
𝜃 − 𝑏′1

)
𝑄, s.t. 

(
𝑄− 𝑞′

𝑘−1
)(

𝜃 − 𝑏′𝑘
)
+

𝑘 ∑
𝑘′=1

(
𝑞′
𝑘′ − 𝑞′

𝑘′−1
)(

𝑏′
𝑘′ − 𝑏′𝑘

)
=
(
𝜃 − 𝑏′1

)
𝑄.

Equating conditional loss across units requires 𝑅PAB
𝑞𝑘+1

−𝑅PAB
𝑞𝑘

= 0, or

0 = −𝑄𝑏𝑘+2 −
(
𝑞𝑘+1 − 𝑞𝑘

)
𝜃 +
(
𝑄+

(
𝑞𝑘+1 − 𝑞𝑘

))
𝑏𝑘+1.

Solving this equation recursively, backwards from 𝑏𝑀+1 = 0, gives a closed-form expression for optimal bids conditional on quantities,
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Fig. 4. Iso-loss curves of conditional underbidding and overbidding regret in the uniform-price auction. 

𝑏𝑘 =
𝑀∑

𝑘′=𝑘

𝑄𝑘′−𝑘
(
𝑞𝑘′ − 𝑞𝑘′−1

)∏𝑘′
𝑗=𝑘

[
𝑄+

(
𝑞𝑗 − 𝑞𝑗−1

)]𝜃.

Minimizing loss then implies

𝑞𝑘 =
𝑘 
𝑀

𝑄, and 𝑏𝑘 =
𝜃

𝑀 + 1

𝑀∑
𝑘′=𝑘

[
𝑀

𝑀 + 1

]𝑘′−𝑘

.

Notably, minimax bidpoints are evenly spaced in the quantity space. Fig. 5 plots these bids and compares them to minimax-loss bids 
of the corresponding uniform-price auction. ◀

6.2. Uniform-price auctions

In Section 5.2 we showed that there are typically many minimax-loss bids in the unconstrained uniform-price auction. We show 
in Appendix C that this is in stark contrast to the bidpoint-constrained uniform-price auction, where there is a unique minimax-loss 
bid.

We provide some intuition for the uniqueness in the constrained case and contrast it with the multiplicity of the unconstrained 
case. Intuitively, when the bidder receives a small quantity, they do not leave a lot of money on the table due to overbidding, because 
they received a small number of units and their total payment is low; they also do not miss out on significant utility from underbidding, 
because the market price will tend to be high and they will not desire many units at this price. Thus the main source of loss is bids 
on intermediate quantities, leaving bids on small (and very large) quantities only partially specified. This stands in contrast to the 
bidpoint-constrained case where the locations of the bid steps are choice variables. Given the choice, the bidder will submit relatively 
dense bids for intermediate quantities and relatively sparse bids for extreme quantities; the large gaps between bid points for small 
units work against the intuition arising from the multi-unit case, where bidpoint gaps are uniform, that bids for small quantities are 
not uniquely determined.

The construction of the minimax-loss bid in the constrained uniform-price auction follows from observing that steps in the implied 
bid function extend between the two iso-loss curves. In particular, the minimax-loss bid in the constrained uniform-price auction 
extends from the lower iso-loss curve to the upper iso-loss curve, then jumps down to the lower iso-loss curve, and extends again to 
the upper iso-loss curve; this continues until a bid of zero is reached. Fig. 4b illustrates this construction for 𝑀 = 4. If the bid did 
not extend fully between the two iso-loss curves, with a slight perturbation the bid could be made to lie strictly between the two 
iso-loss curves, which would entail strictly lower loss. Constructing bidpoint-constrained minimax-loss bids is then straightforward. 
For loss 𝐿 such that 𝑐(⋅;𝐿) ≥ 𝑐(⋅;𝐿), let 𝑞0 = 0 and for all 𝑘 ∈ {1,… ,𝑀} let 𝑏𝑘 = 𝑐(𝑞𝑘−1;𝐿) and let 𝑞𝑘 be such that 𝑐(𝑞𝑘;𝐿) = 𝑏𝑘.31

If 𝑐(𝑞𝑀 ;𝐿) > 0 constrained minimax loss is above 𝐿, and if 𝑐(𝑞𝑀 ;𝐿) < 0 constrained minimax loss is below 𝐿. In either case, a new 
level of loss 𝐿′ may be proposed, and the procedure continues until 𝑐(𝑞𝑀 ;𝐿) = 0. Fig. 4a illustrates the case when the level of loss is 
above the minimax loss. In the figure, the final step 𝑞′4 is too high, and loss can be decreased.

The construction of minimax-loss bids between the upper and lower iso-loss curves provides an intuitive argument for the unique

ness of minimax-loss bids in the uniform-price auction. Given a level of loss and associated iso-loss curves, either there is no 𝑀 -step 
step function between them, or there is a single 𝑀 -step step function between them, or there are multiple such step functions between 

31 In the event that 𝑐(𝑄;𝐿) > 𝑏𝑘 , we define 𝑞𝑘 = 𝑄.
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Fig. 5. Minimax-loss bids under flat marginal values, when bidders are constrained to 𝑀 ∈ {1,2,5} bidpoints. In bidpoint-constrained auctions, minimax-loss bids 
are unique in both the pay-as-bid and uniform-price auctions. As the number of bidpoints increases, the upper and lower iso-loss curves in the uniform-price auction 
approach tagency.

them. If there is no feasible step function between the iso-loss curves, this level of loss is not feasible and minimax loss is above the 
assumed loss. On the other hand, if there are multiple feasible step functions between the iso-loss curves the iso-loss curves can be 
brought closer together (by reducing assumed loss) while still allowing for a feasible step function between them. This improvement in 
loss is infeasible only when there is a unique step function between the iso-loss curves, and at that point maximum loss is minimized.

The following example illustrates the constrained minimax-loss bid function when the bidder has flat marginal values.

Example 5 (Uniform-price with flat marginal values). Suppose that bidder 𝑖’s marginal value 𝑣𝑖 is flat, 𝑣𝑖(𝑞) = 𝜃 for all 𝑞. The constrained 
loss optimization problem is

min
𝑞′ ,𝑏′

𝑏′1𝑞
′
1, s.t. 𝑏′𝑘𝑞′𝑘 =

(
𝜃 − 𝑏′𝑘

)(
𝑄− 𝑞′𝑘

)
∀𝑘.

The minimax-loss bid induces loss 𝐶𝑀𝑄𝜃, and solves

𝑞0 = 0, 𝑞𝑘 =

(
𝐶𝑀 −

𝐶2
𝑀

𝑞𝑘−1 −
(
1 −𝐶𝑀

))𝑄, 𝑞𝑀 =
(
1 −𝐶𝑀

)
𝑄, and 𝑏𝑘 =

𝐶𝑀𝜃

𝑞𝑘

.

The solution to this expression is unique: the recursive equation for 𝑞𝑘 increases in 𝐶𝑀 , while the endpoint condition for 𝑞𝑀 decreases 
in 𝐶𝑀 .32 Fig. 5 illustrates these bids and compares them to the unique minimax-loss bids in the pay-as-bid auction. ◀

Examples 4 and 5 suggest a new testable prediction. With flat marginal values, the bids in the bidpoint-constrained pay-as-bid 
auction are evenly spaced, while they are more clustered around intermediate quantities in the bidpoint-constrained uniform-price 
auction. More generally, the location of the bids in the pay-as-bid auction is more dispersed than in the uniform-price auction.

The examples also show that Comparison 1, which shows that the conditional regret minimizing bid of the uniform-price auction 
is higher and steeper than the minimax-loss bid of the pay-as-bid auction, does not fully extend to the bidpoint-constrained case. In 
the constrained case, bids are on average steeper in the uniform-price auction than in the pay-as-bid auction, 𝛼UPA ≥ 𝛼PAB, but neither 
auction’s bids are higher: 𝑏UPA

1 > 𝑏PAB
1 and 𝑞UPA

𝑀
< 𝑞PAB

𝑀
. By continuity, even if the marginal values are not perfectly flat, the two bid 

functions cannot be ranked uniformly in the constrained case.

7. Conclusion

In this paper we have characterized optimal prior-free bids in the pay-as-bid and uniform-price auctions, the two leading auction 
formats for allocating homogeneous goods such as electricity and government debt. The two pricing rules create different incentives 
for the bidders; our analysis shows that taking a worst-case loss approach to bid optimization enables a tractable analysis of the 
two formats and leads to new testable predictions. Remarkably, our analysis remains tractable even with multi-dimensional private 
information because we do not require the inversion of strategies as in the canonical Bayes-Nash equilibrium approach. Hence, we 
believe the worst-case loss approach may also be fruitfully applied to other complex strategic interactions.
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Appendix A. Omitted proofs

A.1. Proofs for Section 3

Proof of Proposition 1. Because there are only two units for sale, it is sufficient to analyze the two bidders with the highest marginal 
values for their first units. Denote these bidders 1 and 2, and let bidder 𝑖’s marginal values be (𝑣𝑖, 𝜌𝑣𝑖). Without loss of generality 
assume that bidder 1’s marginal value for their first unit is above bidder 2’s, 𝑣1 > 𝑣2. Let 𝜏 ∈ [0,1] be such that 𝑣2 = 𝜏𝑣1. Suppose it 
is efficient that the two bidders with the highest values win one unit each. This can only be the case if 𝑣1 + 𝜏𝑣1 ≥ 𝑣1 + 𝜌𝑣1, i.e., if and 
only if 𝜏 ≥ 𝜌. Note that it cannot be efficient that the bidder with the third-highest value wins anything.

We first show the result when having two winners is efficient. Let 𝜏 ≥ 𝜌. Bidder 1 wins one unit in the PAB auction since 𝑏PAB
21 ≥ 𝑏PAB

12 . 
If 𝜌 ≤ 3

7 , then this inequality equals 𝜏𝑣1(3−𝜌)
6 ≥ 𝜌𝑣1

3 , which is true by assumption. If 𝜌 > 3
7 , then 𝜏𝑣1(3+2𝜌)

9 ≥ 𝜌𝑣1
3 is also true because 

𝜏 ≥ 𝜌 ≥ 3𝜌 
3+2𝜌 holds.

Bidder 1 wins one unit in the FRB uniform-price auction since 𝑏FRB
21 ≥ 𝑏FRB

12 ⇔ 𝜏𝑣1 ≥ 𝜌𝑣1∕2⇔ 𝜏 > 𝜌∕2, which is true by assumption.

Bidder 1 wins one unit in the LAB uniform-price auction since 𝑏LAB
21 ≥ 𝑏LAB

12 holds. To see this, note that the inequality is equivalent 
to 𝜏𝑣1

2 ≥ 𝜌𝑣1
3 if 𝜌 < 1

2 . This inequality holds by assumption. If 𝜌 ≥ 1
2 , then bidder 1 wins one unit if 𝜏𝑣1(1+𝜌)

3 ≥ 𝜌𝑣1
3 , which also holds 

since 𝜏 ≥ 𝜌 ≥ 𝜌 
1+𝜌

.

We now prove the welfare ranking when it is ex post efficient for a single bidder to receive both units. Let 𝜌 > 𝜏 . Let 𝜌 ≤ 3
7 . 

From the previous paragraphs, bidder 1 wins two units in the PAB auction if 𝜏 ≤ 2𝜌 
3−𝜌

. Bidder 1 wins two units in the FRB auction 

if 𝜏 ≤ 𝜌

2 . Bidder 1 wins two units in the LAB auction if 𝜏 ≤ 2𝜌
3 . Since the PAB cutoff for 𝜏 is higher than the LAB cutoff and the 

LAB cutoff is higher than the FRB cutoff ( 2𝜌 
3−𝜌

≥ 2𝜌
3 ≥ 𝜌

2 ), the PAB is efficient whenever the LAB is efficient and the LAB is efficient 

whenever the FRB is efficient. The same ranking of cutoffs applies when 37 ≤ 𝜌 ≤ 1
2 (in which case it is 3𝜌 

3+2𝜌 ≥ 2𝜌
3 ≥ 𝜌

2 ) and when 𝜌 > 1
2

(
3𝜌 

3+2𝜌 ≥ 𝜌 
1+𝜌

≥ 𝜌

2 ). □

A.2. Proofs for Section 4

Proof of Lemma 1. Consider the maximization of loss

sup
𝑏̃

sup 
𝐵−𝑖∈

𝔼𝐵−𝑖

[
𝑢̂
(
𝑞𝑖(𝑏̃, 𝑏−𝑖), 𝑡𝑖

(
𝑏̃, 𝑏−𝑖

)
;𝑣𝑖
)
− 𝑢̂
(
𝑞𝑖
(
𝑏𝑖, 𝑏−𝑖

)
, 𝑡𝑖
(
𝑏𝑖, 𝑏−𝑖

)
;𝑣𝑖
)]

,

where we have swapped the order of the suprema. Observe that the inner maximization problem is linear in the choice variable 𝐵−𝑖 . 
Winkler (1988) proves that the extreme points of  are distributions with a single point in the support. Since loss is linear in 𝐵−𝑖 , 
maximum loss is attained at an extreme point. □

A.2.1. Analysis of pay-as-bid auctions

Proof of Lemma 2. Lemma 1 proves that loss is maximized by bid distributions with one opponent bid profile in the support, leading 
to the equivalence of loss and regret. Consider regret 𝑅

(
𝑏𝑖;𝑏−𝑖, 𝑣𝑖

)
and suppose 𝑏−𝑖 is such that bidder 𝑖 wins 𝑞 units: 𝑞 = 𝑞𝑖(𝑏𝑖, 𝑏−𝑖). 

Regret depends on bidder 𝑖’s best reply to 𝑏−𝑖, which is given by 𝑏̃𝑖 ∈ arg sup𝑏̃ 𝑢̂
(
𝑞𝑖
(
𝑏̃, 𝑏−𝑖

)
, 𝑡𝑖
(
𝑏̃, 𝑏−𝑖

)
;𝑣𝑖
)
. Let 𝑞′ = 𝑞𝑖(𝑏̃𝑖, 𝑏−𝑖). Regret 

is then

𝑅
(
𝑏𝑖;𝑏−𝑖, 𝑣𝑖

)
=

𝑞′

∫
0 

𝑣𝑖(𝑥) − 𝑏̃𝑖(𝑥)𝑑𝑥−

𝑞

∫
0 

𝑣𝑖(𝑥) − 𝑏𝑖(𝑥)𝑑𝑥.

Regret is decreasing pointwise in 𝑏̃𝑖. Instead of maximizing regret with respect to 𝑏−𝑖 , we maximize it with respect to 𝑏̃𝑖 and 𝑞′. Note 
that 𝑞′ cannot be strictly lower than 𝑞 since 𝑏𝑖(𝑥) ≤ 𝑣𝑖(𝑥) for all 𝑥.

If 𝑞′ > 𝑞, then regret can be written as

𝑞

∫
0 

𝑏𝑖(𝑥) − 𝑏̃𝑖(𝑥)𝑑𝑥+

𝑞′

∫
𝑞

𝑣𝑖(𝑥) − 𝑏̃𝑖(𝑥)𝑑𝑥.
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To win 𝑞′ units, 𝑏̃𝑖(𝑥) ≥ 𝑏𝑖(𝑞) must be true for all 𝑥 ∈ [0, 𝑞′]. To see this, note that bidder 𝑖 does not win more than 𝑞 units with bid 
𝑏𝑖(𝑞). Hence, to win 𝑞′ > 𝑞 units, bidder 𝑖 needs to bid at least this much. The quantity 𝑞′ that then maximizes regret is either 𝑄 or 
such that 𝑣𝑖(𝑞′) = 𝑏𝑖(𝑞). This leads to the expression for underbidding regret in Equation (6). A worst-case opponent bid profile is 
such that they all submit flat bids at 𝑏𝑖(𝑞).

If 𝑞′ = 𝑞, then regret equals

𝑞

∫
0 

𝑏𝑖(𝑥) − 𝑏̃𝑖(𝑥)𝑑𝑥.

Regret is clearly maximized if 𝑏̃𝑖(𝑥) = 0, leading to overbidding regret 𝑅
PAB

𝑞

(
𝑏𝑖;𝑣𝑖

)
. A worst-case bid profile is such that there is one 

other bidder who bids 𝑣𝑖(0) for quantities below 𝑄− 𝑞 and nothing else. □

A.2.2. Analysis of uniform-price auctions

Proof of Lemma 3. The proof of this claim is substantially similar to the proof of the equivalent result for the pay-as-bid auction 
(Lemma 2) and is omitted. □

A.3. Proofs for Section 5

A.3.1. Pay-as-bid auctions

Proof of Lemma 4. We show that 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖) = ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥 for all 𝑞. First, since ∫ 𝑞
0 𝑏𝑖(𝑥)𝑑𝑥 is weakly increasing in 𝑞, Lemma 2

implies that maximum loss is

max
⎧⎪⎨⎪⎩ sup 

𝑞∈[0,𝑄)
𝑅PAB

𝑞

(
𝑏𝑖;𝑣𝑖

)
,

𝑄 

∫
0 

𝑏𝑖(𝑥)𝑑𝑥

⎫⎪⎬⎪⎭ .

Note that increasing all bids by 𝜀 > 0 will weakly decrease 𝑅𝑞(𝑏
𝑖;𝑣𝑖) for all 𝑞 and strictly increase ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥. Then, if 𝑏𝑖 is loss

minimizing, it must be that ∫ 𝑄
0 𝑏𝑖(𝑥)𝑑𝑥 ≥ sup𝑞 𝑅PAB

𝑞 (𝑏𝑖;𝑣𝑖). Similarly, decreasing all bids by 𝜀 > 0 strictly decreases ∫ 𝑄
0 𝑏𝑖(𝑥)𝑑𝑥 and 

continuously affects 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖), thus ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥 = sup𝑞 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖).33

Now, suppose that there is 𝑞 ∈ [0,𝑄) with 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖) < ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥. If 𝑏𝑖(𝑞) = 0, then

𝑅PAB
𝑞

(
𝑏𝑖;𝑣𝑖

)
=

𝑞

∫
0 

𝑏𝑖(𝑥)𝑑𝑥+

𝑄 

∫
𝑞

𝑣𝑖(𝑥)𝑑𝑥 ≥
𝑄 

∫
0 

𝑏𝑖(𝑥)𝑑𝑥 =

𝑞

∫
0 

𝑏𝑖(𝑥)𝑑𝑥.

This is a contradiction, and it must be that 𝑏𝑖(𝑞) > 0. In this case, reducing 𝑏𝑖(𝑞) will weakly increase 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖), strictly decrease 

𝑅PAB
𝑞′

(𝑏𝑖;𝑣𝑖) for all 𝑞′ > 𝑞, and will not affect 𝑅PAB
𝑞′

(𝑏𝑖;𝑣𝑖) for 𝑞′ < 𝑞; reducing 𝑏𝑖(𝑞) also reduces ∫ 𝑄
0 𝑏𝑖(𝑥)𝑑𝑥, and the arguments above 

show that increasing all bids by some small amount will strictly reduce loss. It follows that 𝑅PAB
𝑞 (𝑏𝑖;𝑣𝑖) = ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥 for all 𝑞. □

Proof of Theorem 1. Lemma 4 establishes that the derivative of underbidding regret must equal zero for all 𝑞 ∈ [0,𝑄]. Recall that 
underbidding regret can be written as

𝑞

∫
0 

𝑏(𝑥) − 𝑏(𝑞)𝑑𝑥+

𝑣−1(𝑏(𝑞))

∫
𝑞

𝑣(𝑥) − 𝑏(𝑞)𝑑𝑥.

The first derivative of underbidding regret with respect to 𝑞 is

−

𝑞

∫
0 

𝑏′(𝑞)𝑑𝑥−

𝑣−1(𝑏(𝑞))

∫
𝑞

𝑏′(𝑞)𝑑𝑥+ (𝑣(𝑣−1(𝑏(𝑞))) − 𝑏(𝑞)) 1 
𝑣′(𝑣−1(𝑏(𝑞)))

− (𝑣(𝑞) − 𝑏(𝑞)).

This straightforwardly simplifies to the derivative set equal to zero in Equation (7).

33 A bid function which is not strictly positive—i.e., for which there exists 𝑞 with 𝑏𝑖(𝑞) = 0�-cannot be uniformly decreased by 𝜀. Nonetheless, decreasing the bid by 
𝜀 where possible will decrease ∫ 𝑄

0 𝑏𝑖(𝑥)𝑑𝑥 and will continuously affect sup𝑞 𝑅PAB
𝑞

(𝑏𝑖;𝑣𝑖).
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It remains to establish the initial condition and uniqueness. Because 𝑏𝑖(𝑄) ≥ 0 by constraint, it is sufficient to show that 𝑏𝑖(𝑄)
cannot be strictly positive. By the fundamental theorem of differential equations (the Picard–Lindelöf theorem), if there are solutions 
𝑏𝑖 and 𝑏̃𝑖 with 𝑏𝑖(𝑄) = 0 < 𝑏̃𝑖(𝑄), then 𝑏𝑖 ≤ 𝑏̃𝑖. The differential form ensures equal conditional regret for all units, and conditional 
regret for unit 𝑞 = 𝑄 under bid 𝑏̃𝑖 is ∫ 𝑄

0 𝑏̃𝑖(𝑥)𝑑𝑥 > ∫ 𝑄
0 𝑏𝑖(𝑥)𝑑𝑥. Then maximum loss is lower under bid 𝑏𝑖 than under bid 𝑏̃𝑖, and 

𝑏̃𝑖 is not a minimax-loss bid. Then 𝑏𝑖(𝑄) = 0 for any minimax-loss bid, and uniqueness follows from the fundamental theorem of 
differential equations.

We now show that the minimax-loss bid vector is strictly below marginal values wherever 𝑣 > 0. To see this, recall that we 
assumed 𝑣(𝑄) > 0 (and the corresponding discussion in footnote 10). The above implies that 𝑏PAB(𝑄) = 0 < 𝑣(𝑄). Then if there is 𝑞
with 𝑏PAB(𝑞) = 𝑣(𝑞) > 0, there is a maximal such quantity (because 𝑑𝑏PAB∕𝑑𝑞 is continuous), denoted by 𝑞. Equation (7) implies that 
the derivative of 𝑏PAB is zero at 𝑞, which contradicts the assumption that 𝑞 is the maximal quantity with 𝑏PAB(𝑞) = 𝑣(𝑞) > 0. It follows 
that 𝑏PAB(𝑞) < 𝑣(𝑞) for all 𝑞 ∈ [0,𝑄].

The minimax-loss bid vector is strictly decreasing in quantity wherever 𝑣 > 0. This follows from the left-hand side of Equation (7)

being negative (due bids being below marginal values) and inverse marginal values (𝑣−1) being positive.

If 𝑣(𝑄) ≥ 𝑏(0), then 𝑣−1(𝑏(𝑞)) = 𝑄 for all 𝑞 ∈ [0,𝑄]. It can be directly verified that the first derivative of the bidding function in 
Equation (8) is as in Equation (7). □

A.3.2. Uniform-price auctions

Proof of Proposition 2. Note that maximal regret is strictly positive for any non-degenerate 𝑣𝑖 . Consider the bid 𝑏𝑖(0). Overbidding 
regret is 𝑅

UPA

0 (𝑏𝑖;𝑣𝑖) = 0 ⋅𝑏𝑖(0) = 0 and underbidding regret equals 𝑅UPA
0 (𝑏𝑖;𝑣𝑖) = ∫ 𝑄

0
(
𝑣𝑖(𝑥) − 𝑏𝑖(0)

)
+ 𝑑𝑥. Hence, since minimax regret 

is positive, any bid 𝑏𝑖(0) = 𝑣𝑖(0) − 𝜀 with 𝜀 > 0 but small is optimal. □

A.3.3. Comparison of auction formats

Proof of Comparison 1. We first prove that when 𝑏UPA is conditionally regret minimizing and 𝑏PAB minimizes loss in the pay-as-bid 
auction, then 𝑏UPA(𝑞) ≥ 𝑏PAB(𝑞) for all 𝑞 ∈ [0,𝑄]. Note first that 𝑏PAB(𝑄) = 𝑏UPA(𝑄) = 0. Next, observe that if 𝑏PAB(𝑞) = 𝑏UPA(𝑞) = 𝑏, 
then

𝑑𝑏PAB(𝑞)
𝑑𝑞 

= −𝑣(𝑞) − 𝑏

𝑣−1(𝑏) 
> − 𝑣(𝑞) 

𝑣−1(𝑏)
= 𝑑𝑏UPA(𝑞)

𝑑𝑞 
. (9)

Hence, if the bids for a quantity are the same, then the absolute value of the slope of the UPA bid function is higher than the absolute 
value of the slope of the PAB bid function. Consequently, for 𝑞′ marginally below 𝑞, the UPA bids are strictly higher than the PAB 
bids. It follows that 𝑏PAB(𝑞′) < 𝑏UPA(𝑞′) for 𝑞′ < 𝑄 as well as the overall comparison.

The comparison of the average slope follows immediately from 𝑏PAB(𝑄) = 𝑏UPA(𝑄) = 0 and 𝑏PAB(0) < 𝑏UPA(0) = 𝑣(0). □

Proof of Comparison 2. In light of Comparison 4, we first show that the initial bid in the uniform-price auction must lie above the 
initial bid in the pay-as-bid auction. Specifically, 𝑅PAB

0 (𝑏PAB;𝑣𝑖) = ∫ 𝑄
0 (𝑣𝑖(𝑥) − 𝑏PAB(0))+𝑑𝑥 = 𝐿PAB and 𝑅UPA

0 (𝑏UPA;𝑣𝑖) = ∫ 𝑄
0 (𝑣𝑖(𝑥) −

𝑏UPA(0))+𝑑𝑥 ≤ 𝐿UPA ≤ 𝐿PAB. It follows that 𝑏UPA(0) ≥ 𝑏PAB(0), and thus it cannot be that 𝑏UPA < 𝑏PAB.

Second, observe that for 𝑞 close to 𝑄 underbidding loss becomes arbitrarily close to 0 in the uniform-price auction. Thus, the 
lower iso-loss curve must intersect the horizontal axis at some 𝑞 < 𝑄, implying the existence of a minimax-loss bid which is zero for 
quantities strictly below 𝑄. Since the minimax-loss bids in the pay-as-bid auction are positive for all 𝑞 < 𝑄 (Theorem 1), there exists 
a minimax-loss bid in the uniform-price auction which is not everywhere above the unique minimax-loss bid in the unconstrained 
pay-as-bid auction. □

Proof of Comparison 4. Let 𝑞 be the quantity for which worst-case loss equals conditional regret in the uniform-price auction, and 
let 𝑏UPA denote the conditional regret minimizing bids of the uniform-price auction. Then we have that

sup 
𝐵−𝑖∈

𝐿UPA
(
𝑏UPA;𝐵−𝑖, 𝑣𝑖

)
=

𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏LAB (𝑞)

)
+ 𝑑𝑥

≤
𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏PAB (𝑞)

)
+ 𝑑𝑥

≤
𝑄 

∫
𝑞

(
𝑣𝑖 (𝑥) − 𝑏PAB (𝑞)

)
+ 𝑑𝑥+

𝑞

∫
0 

𝑏PAB(𝑥) − 𝑏PAB(𝑞)𝑑𝑥

= sup 
𝐵−𝑖∈

𝐿PAB
(
𝑏PAB;𝐵−𝑖, 𝑣𝑖

)
,
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where we use that 𝑏PAB ≤ 𝑏UPA (Comparison 1) and the fact that underbidding regret involves lowering the bids on [0, 𝑞]. □

A.3.4. Comparison of bids

From Example 3, define functions 𝑏𝐿 and 𝑏𝑅 by

𝑏𝐿 (𝑞) = 𝜃 −
√
(2𝜃 − 𝜌𝑞)𝜌𝑞, 𝑏𝑅 (𝑞;𝑄) = (𝑄− 𝑞) (2𝜃 − (𝑞 +𝑄)𝜌)

2𝑄 
.

With these definitions, we can write the conditional regret minimizing bid in the uniform-price auction as

𝑏UPA (𝑞) =
⎧⎪⎨⎪⎩

𝑏𝐿 (𝑞) if 0 ≤ 𝑞 ≤ 𝜃−
√

𝜃2−𝜌2𝑄2

𝜌 ,

𝑏𝑅 (𝑞) otherwise.

Lemma 5 (Comparison of piecewise components of 𝑏UPA). For all 𝑞 ∈ [0,𝑄], 𝑏𝐿(𝑞) ≥ 𝑏𝑅(𝑞).

Proof. The bid function 𝑏𝐿 equates overbidding and underbidding loss for quantity 𝑞 when 𝑏(𝑞) > 𝑣(𝑄), and the bid function 𝑏𝑅

equates overbidding and underbidding loss for quantity 𝑞 when 𝑣−1(𝑏(𝑞)) = 𝑄. Note that 𝑄 does not directly affect 𝑏𝐿. Moreover, 
whenever 𝑣(𝑄) > 0, increasing 𝑄 increases the underbidding loss associated with any quantity 𝑞 such that 𝑣(𝑄) > 𝑏𝑅(𝑞;𝑄) without 
affecting the overbidding loss. Then increasing 𝑄 must weakly increase bids for such quantities. For any such quantity bids increase 
in 𝑄 until 𝑏𝑅(𝑞;𝑄) = 𝑏𝐿(𝑞), and beyond this point the bid for this quantity is unaffected by 𝑄. □

Proof of Proposition 3. Appealing to Lemma 5, we establish the first point by analyzing 𝑏𝐿 and 𝑏𝑅 separately. First, when extended 
to the entire real line 𝑏𝐿 and 𝑏UPA

BNE
cross exactly twice. To see this, we define 𝜂 = (𝑛− 1)∕(𝑛− 2) and check

𝜃 −
√
(2𝜃 − 𝜌𝑞)𝜌𝑞 = 𝜃 − 𝜂𝜌𝑞 ⟺ 𝜂2𝜌2𝑞2 = (2𝜃 − 𝜌𝑞)𝜌𝑞.

This equation has a trivial solution at 𝑞 = 0, and a nontrivial solution at a unique 𝑞∗
𝐿

> 0. We note that for 𝑞 ∈ (0, 𝑞∗
𝐿
), 𝑏𝐿(𝑞) < 𝑏UPA

BNE
(𝑞), 

while for 𝑞 > 𝑞∗
𝐿

, 𝑏𝐿(𝑞) > 𝑏UPA
BNE

(𝑞).
Second, when extended to the entire real line 𝑏𝑅 and 𝑏UPA

BNE
also cross exactly twice. To see this, we check

(𝑄− 𝑞) (2𝜃 − (𝑞 +𝑄)𝜌)
2𝑄 

= 𝜃 − 𝜂𝜌𝑞 ⟺ 2𝑄𝜂𝜌𝑞 = 2𝜃𝑞 +
(
𝑄2 − 𝑞2

)
𝜌.

This quadratic equation has solutions at [(2𝜃 − 2𝜂𝜌𝑄) ±
√
(2𝜃 − 2𝜂𝜌𝑄)2 + 4𝑄2𝜌2]∕[2𝜌]. Comparing the discriminant to the leading 

term reveals that one solution is negative, hence there is a unique crossing point at a positive quantity, which we denote by 𝑞∗
𝑅

> 0. 
Lemma 5 then implies that for 𝑞 ∈ [0, 𝑞∗

𝑅
), 𝑏𝑅(𝑞) < 𝑏UPA

BNE
(𝑞), and for 𝑞 > 𝑞∗

𝑅
, 𝑏𝑅(𝑞) > 𝑏UPA

BNE
(𝑞).

The leading result of Proposition 3 is a consequence of the following observation: either 𝑏UPA
MML

(𝑞) ≤ 𝑏UPA
BNE

(𝑞) for all 𝑞 ∈ [0,𝑄], or 
there is a crossing point 𝑞 at which 𝑏UPA

MML
(𝑞) = 𝑏UPA

BNE
(𝑞). The preceding arguments establish that 𝑏UPA

MML
cannot cross 𝑏UPA

BNE
from above 

for 𝑞 ∈ (0,𝑄), hence 𝑏UPA
MML

(𝑞) > 𝑏UPA
BNE

(𝑞) for all 𝑞 ∈ (0,𝑄).
Now note that as 𝑛 tends to infinity, 𝑏UPA

BNE
→ 𝜃 − 𝜌𝑞 = 𝑣(𝑞;𝜃) since (𝑛 − 1)∕(𝑛 − 2)→ 1. Since bids under maximal uncertainty are 

always below value, BNE bids are higher. Similarly, when 𝜌 is very close to 0 the BNE bid is essentially 𝜃 for all quantities. □

Proof of Proposition 4. BNE bids are arbitrarily close to 𝜃 for all 𝑞 if 𝜌 is sufficiently close to 0. These bids are therefore higher than 
bids under maximal uncertainty, which are boundedly far from 𝜃 when 𝑞 is small, irrespective of 𝜌. Let 𝑄∕𝑛 < 𝑞∗. Pycia and Woodward 
(2025, Theorem 1) implies that 𝑏PAB

BNE
(𝑄∕𝑛) = 𝑣(𝑄∕𝑛;𝜃). Hence, BNE bids for larger quantities are above value and therefore above 

the bids under maximal uncertainty. □

A.3.5. Comparison of equilibrium outcomes

Proof of Proposition 6. By Lemma 5, for all 𝑞 ∈ [0,𝑄𝑖],

𝜃 −
√
(2𝜃 − 𝜌𝑞)𝜌𝑞 ≥ (𝑄− 𝑞) (2𝜃 − (𝑄+ 𝑞)𝜌)

2𝑄 
.

Then we may bound revenue under maximal uncertainty by(
𝜃 −
√
(2𝜃 − 𝜌𝑞)𝜌𝑞

)
𝑛𝑞.

Optimizing this expression with respect to 𝑞 requires(
𝜃 −
√
(2𝜃 − 𝜌𝑞)𝜌𝑞

)
𝑛−

[
𝜃 − 𝜌𝑞 √

(2𝜃 − 𝜌𝑞)𝜌𝑞

]
𝑛𝜌𝑞 = 0.
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This expression may be rearranged to solve

(2𝜃 − 𝜌𝑞)𝜃2𝜌𝑞 = (3𝜃 − 2𝜌𝑞)2 𝜌2𝑞2.

Letting 𝑥 ≡ 𝜌𝑞∕𝜃, this is solved at

4𝑥3 − 12𝑥2 + 10𝑥− 2 = 0. (10)

We now consider the zeros of this cubic. Its derivative is 12𝑥2 − 24𝑥 + 10, which has zeros at 1 ± 1 
12

√
24. Since Equation (10)

is zero when 𝑥 = 1, it follows that there is at most a single zero on the interval 𝑥 ∈ (0,1); and, as the first-order condition for a 
profit-maximization problem, there will be exactly one solution in (0,1).

It suffices to show that (10) is positive at 𝑞 such that 𝑏UPA
BNE

(𝑞) = 𝑏UPA
MML

(𝑞). From the proof of Proposition 3, this quantity 𝑞⋆ is such 
that 2𝜃 = (1+ 𝜂2)𝜌𝑞⋆. By the substitution 𝑥 = 𝜌𝑞∕𝜃 we check the sign of (10) at 𝑥 = 2∕(1+ 𝜂2). Since 𝜂 ∈ [1,2] it is sufficient to check 
the sign of (10) for 𝑥 ∈ [2∕5,1]. We check

4
(2
5

)3
− 12

(2
5

)2
+ 10

(2
5

)
− 2 = 32 

125
− 48

25
+ 20

5 
− 2 = 1 

125
(32 − 240 + 500 − 250) > 0.

Then (10) is positive at 𝑥 = 2∕5 and hence is positive for all 𝑥 ∈ [2∕5,1], by properties of the cubic established above. It follows that 
𝑞⋆

MML
is to the left of 𝑞∗, and hence 𝑏UPA

MML
(𝑞⋆

MML
) < 𝑏UPA

BNE
(𝑞⋆

MML
). Then optimal revenue under maximal uncertainty is below optimal 

revenue in Bayes-Nash equilibrium. □

Appendix B. Increasing marginal values

In this appendix we analyze bidding with increasing marginal values in the two-unit case. Marginal values are 𝑣𝑖1 and 𝑣𝑖2 and 
such that 0 ≤ 𝑣𝑖1 < 𝑣𝑖2. Bidder 𝑖 submits two bids 𝑏𝑖1 and 𝑏𝑖2. By the auction rules, 𝑏𝑖1 and 𝑏𝑖2 are the expressed willingnesses to pay 
for the first and second units, respectively. Note that 𝑏𝑖2 > 𝑣𝑖2 cannot be optimal; hence, let 𝑏𝑖2 ≤ 𝑣𝑖2.

B.1. Pay-as-bid auction

In the pay-as-bid auction, maximal loss is analogous to Equation (1):

max
{((

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

))
+ , 
(
𝑏𝑖1 − 𝑏𝑖2

)
+
(
𝑣𝑖2 − 𝑏𝑖2

)
, 𝑏𝑖1 + 𝑏𝑖2

}
;

the only difference is that when bidder 𝑖 loses the auction but could have won at least one unit, winning two units is always better than 
winning just one. When marginal values are relatively similar and 𝑏𝑖1 > 𝑏𝑖2, then the minimax-loss bid vector is as with decreasing 
marginal values: 𝑏PAB

𝑖1 = 1
9

(
3𝑣𝑖1 + 2𝑣𝑖2

)
and 𝑏PAB

𝑖2 = 𝑣𝑖2
3 .

Observe that this optimal bid vector is consistent with 𝑏𝑖1 ≥ 𝑏𝑖2 only if 3𝑣𝑖1 ≥ 𝑣𝑖2. In this case, the bid for the first unit is also less 
than 𝑣𝑖1. In the other case, the constraint 𝑏𝑖1 ≥ 𝑏𝑖2 is binding and the case in which nothing is won is not a worst case (because regret 
conditional on winning one unit is always higher).34 The minimax-loss bid vector is

𝑏PAB
𝑖1 =

{ 1
9

(
3𝑣𝑖1 + 2𝑣𝑖2

)
if 3𝑣𝑖1 ≥ 𝑣𝑖2

𝑣𝑖2
3 if 3𝑣𝑖1 < 𝑣𝑖2

and 𝑏PAB
𝑖2 =

𝑣𝑖2
3 

.

Note that with strongly increasing marginal values, the bid is independent of 𝑣𝑖1 .

B.2. First rejected bid uniform-price auction

In the first rejected bid uniform-price auction, the conditional regret minimizing bid 𝑏FRB
𝑖1 = 𝑣𝑖1 and 𝑏FRB

𝑖2 = 𝑣𝑖2
2 is optimal and 

feasible as long as 2𝑣𝑖1 ≥ 𝑣𝑖2. In general, maximal regret equals

max

⎧⎪⎪⎨⎪⎪⎩
(
𝑣𝑖1 − 𝑏𝑖1 + 𝑣𝑖2 − 𝑏𝑖1

)
+

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(i) 

,
(
𝑏𝑖1 − 𝑣𝑖1

)
+ , 𝑏𝑖2, 𝑣𝑖2 − 𝑏𝑖2

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(ii) 

,2𝑏𝑖2 − 𝑣𝑖1 − 𝑣𝑖2,2𝑏𝑖2 − 𝑣𝑖2
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(iii) 

⎫⎪⎪⎬⎪⎪⎭
.

These are the regrets associated with (i) winning nothing but wanting to win two units; (ii) winning one unit but wanting to win 
zero, one, or two units, respectively; (iii) winning two units but wanting to win zero or one unit. Note that the last case dominates 

34 Because 𝑏𝑖1 = 𝑏𝑖2 = 𝑏 a bidder who wins a single unit can never simultaneously win a second unit and save payment for the first unit, and regret in this case is at 
least 𝑣𝑖2 − 𝑏. If the bidder wins zero units, regret can only be maximized if she would prefer to win two units, in which case she would receive utility 𝑣𝑖1 − 𝑏 < 0 for 
the first unit and utility 𝑣𝑖2 − 𝑏 for the second unit. Then receiving zero units always results in less loss than receiving a single unit.
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the second-last and that if 𝑏𝑖1 = 𝑏𝑖2, then 𝑏𝑖1 = 𝑏𝑖2 > 𝑏𝑖1 − 𝑣𝑖1. Moreover, if 𝑏𝑖1 = 𝑏𝑖2 and 𝑣𝑖1 < 𝑏𝑖1, then 𝑣𝑖2 − 𝑏𝑖2 > 𝑣𝑖1 − 𝑏𝑖1 + 𝑣𝑖2 − 𝑏𝑖1. 
Hence, maximal loss is minimized by bidding

𝑏FRB
𝑖1 =

{
𝑣𝑖1 if 2𝑣𝑖1 ≥ 𝑣𝑖2
𝑣𝑖2
2 else

and 𝑏FRB
𝑖2 =

𝑣𝑖2
2 

.

As in the pay-as-bid auction, with strongly increasing marginal values minimax-loss bids are independent of 𝑣𝑖1 .

B.3. Last accepted bid uniform-price auction

Recall that the conditional regret minimizing bid is 𝑏LAB
𝑖1 = (𝑣𝑖1 + 𝑣𝑖2)∕3 and 𝑏LAB

𝑖2 = 𝑣𝑖2∕3 in the LAB uniform-price auction when 
the marginal values are sufficiently flat. Since 𝑏LAB

𝑖1 ≥ 𝑏LAB
𝑖2 for all values of 𝑣𝑖1 and 𝑣𝑖2, the bid is optimal and feasible also for increasing 

marginal values.

Appendix C. Bidpoint-constrained minimax-loss bids

The appendix contains the detailed analysis of the bidpoint-constrained case of Section 6 and discusses design implications.

C.1. Pay-as-bid auctions

Equating underbidding regret across all units leads to the following expression for minimax-loss bids.

Theorem 3 (Constrained minimax-loss bids in pay-as-bid). The unique minimax-loss bid in the constrained pay-as-bid auction solves

(
𝑞PAB, 𝑏PAB

)
∈ argmin

𝑞′ ,𝑏′

𝑄 

∫
0 

(
𝑣𝑖 (𝑥) − 𝑏̂′(𝑞0)

)
+ 𝑑𝑥,

s.t. 

𝑞′
𝑘

∫
0 

(
𝑏̂′ (𝑥) − 𝑏̂′

(
𝑞′𝑘
))

𝑑𝑥+

𝑄 

∫
𝑞′
𝑘

(
𝑣𝑖 (𝑥) − 𝑏̂′

(
𝑞′𝑘
))

+ 𝑑𝑥

=

𝑄 

∫
0 

(
𝑣𝑖 (𝑥) − 𝑏̂′(𝑞0)

)
+ 𝑑𝑥

for all 𝑘 = 1,2,… ,𝑀 .

Proof of Theorem 3. This proof is substantially similar to proof of the equivalent result for the unconstrained pay-as-bid auction 
(Lemma 4). As in the proof of Lemma 4, Lemma 2 implies that the loss minimization problem is(

𝑞⋆, 𝑏⋆
)
∈ argmin

(𝑞′ ,𝑏′)

[
max 

𝑘∈{0,1,…,𝑀}

[
max

{
𝑅𝑞′

𝑘

(
𝑏′;𝑣𝑖

)
,𝑅𝑞′

𝑘

(
𝑏′;𝑣𝑖

)}]]
.

By definition, 𝑅PAB
𝑞𝑀

(𝑏;𝑣𝑖) ≥ 𝑅
PAB

𝑞𝑘
(𝑏;𝑣𝑖) for all 𝑘. Then the loss optimization problem in the pay-as-bid auction can be written

(
𝑞⋆, 𝑏⋆

)
∈ argmin

(𝑞′ ,𝑏′)

[
max 

𝑘∈{0,1,…,𝑀}
𝑅PAB

𝑞𝑘

(
𝑏′;𝑣𝑖

)]
.

Recall that

𝑅PAB
𝑞𝑘

(
𝑏′;𝑣𝑖

)
=

𝑞𝑘

∫
0 

(
𝑏̂′ (𝑥) − 𝑏̂′

(
𝑞𝑘

))
𝑑𝑥+

𝑄 

∫
𝑞𝑘

(
𝑣𝑖 (𝑥) − 𝑏̂′

(
𝑞𝑘

))
+ 𝑑𝑥.

Note that 𝑅PAB
𝑞𝑘

decreases as 𝑞𝑘 increases while, for all 𝑘′ > 𝑘, 𝑅PAB
𝑞𝑘′

increases as 𝑞𝑘 increases. It follows that if (𝑞⋆, 𝑏⋆) is optimal, 
then 𝑅PAB

𝑞𝑘
(𝑏⋆;𝑣𝑖) = 𝑅PAB

𝑞𝑘′
(𝑏⋆;𝑣𝑖) for all 𝑘,𝑘′. □

We now show how to find the bidpoint-constrained minimax-loss bids in Example 4.



Journal of Economic Theory 226 (2025) 106008

26

B. Kasberger and K. Woodward 

Calculations for Example 4. Equating conditional loss across units requires 𝑅𝑘+1 −𝑅𝑘 = 0 for all k. This is

0 =

[
𝑘+1 ∑
𝑘′=0

(
𝑏𝑘′ − 𝑏𝑘+2

)(
𝑞𝑘′ − 𝑞𝑘′−1

)
+
(
𝑄− 𝑞𝑘+1

)(
𝜃 − 𝑏𝑘+2

)]
−

[
𝑘 ∑

𝑘′=0

(
𝑏𝑘′ − 𝑏𝑘+1

)(
𝑞𝑘′ − 𝑞𝑘′−1

)
+
(
𝑄− 𝑞𝑘

)(
𝜃 − 𝑏𝑘+1

)]
=
(
𝑏𝑘+1 − 𝑏𝑘+2

)(
𝑞𝑘+1 − 𝑞𝑘

)
+
(
𝑄− 𝑞𝑘+1

)(
𝜃 − 𝑏𝑘+2

)
+

𝑘 ∑
𝑘′=0

(
𝑏𝑘+1 − 𝑏𝑘+2

)(
𝑞𝑘′ − 𝑞𝑘′−1

)
−
(
𝑄− 𝑞𝑘

)(
𝜃 − 𝑏𝑘+1

)
=
(
𝑏𝑘+1 − 𝑏𝑘+2

)
𝑞𝑘+1 +

(
𝑄− 𝑞𝑘+1

)(
𝜃 − 𝑏𝑘+2

)
−
(
𝑄− 𝑞𝑘

)(
𝜃 − 𝑏𝑘+1

)
= −𝑄𝑏𝑘+2 −

(
𝑞𝑘+1 − 𝑞𝑘

)
𝜃 +
(
𝑄+

(
𝑞𝑘+1 − 𝑞𝑘

))
𝑏𝑘+1.

Let 𝑔𝑘 ≡ 𝑞𝑘 − 𝑞𝑘−1 be the gap between the 𝑘th and 𝑘+ 1th bid points. Then we have(
𝑄+ 𝑔𝑘+1

)
𝑏𝑘+1 = 𝑔𝑘+1𝜃 +𝑄𝑏𝑘+2 ⟺ 𝑏𝑘+1 =

𝑔𝑘+1
𝑄+ 𝑔𝑘+1

𝜃 + 𝑄 
𝑄+ 𝑔𝑘+1

𝑏𝑘+2

⟺ 𝑏𝑘 =
𝑔𝑘

𝑄+ 𝑔𝑘

𝜃 + 𝑄 
𝑄+ 𝑔𝑘

𝑏𝑘+1.

We now solve recursively for optimal bids, conditional on bid points. When 𝑘 = 𝑀 , we have 𝑏𝑘+1 = 0 by assumption, and 𝑏𝑀 = 𝑔𝑀

𝑄+𝑔𝑀
𝜃. 

For 𝑘 < 𝑀 , we have

𝑏𝑘 =
𝑀∑

𝑘′=𝑘

𝑄𝑘′−𝑘𝑔𝑘′∏𝑘′
𝑗=𝑘

[
𝑄+ 𝑔𝑗

]𝜃.

Since 𝑅0 = (𝜃 − 𝑏1)𝑄, the loss-minimization problem is (dropping the irrelevant constants 𝜃 and 𝑄)

min
𝑔

1 −
𝑀∑

𝑘=1

𝑄𝑘−1𝑔𝑘∏𝑘
𝑘′=1
[
𝑄+ 𝑔𝑘′

]
=min

𝑔
1 −

∑𝑀
𝑘=1

1 
𝑄+𝑔𝑘

∏𝑀
𝑘′=𝑘

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘∏𝑀

𝑘′=1
[
𝑄+ 𝑔𝑘′

]
=min

𝑔

∏𝑀
𝑘′=1
[
𝑄+ 𝑔𝑘′

]
−
∑𝑀

𝑘=1
1 

𝑄+𝑔𝑘

∏𝑀
𝑘′=𝑘

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘∏𝑀

𝑘′=1
[
𝑄+ 𝑔𝑘′

] .

Denote the numerator by 𝐴𝑀 . We show that 𝐴𝑀 = 𝑄𝑀 . First, 𝐴1 = 𝑄:

𝐴1 =
[
𝑄+ 𝑔1

]
− 1 

𝑄+ 𝑔1

[
𝑄+ 𝑔1

]
𝑔1 = 𝑄.

The result follows by induction on 𝑀 ; assuming 𝐴𝑀 = 𝑄𝑀 , we have

𝑀+1∏
𝑘′=1 

[
𝑄+ 𝑔𝑘′

]
−

𝑀+1∑
𝑘=1 

1 
𝑄+ 𝑔𝑘

𝑀+1∏
𝑘′=𝑘 

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘

=
[
𝑄+ 𝑔𝑀+1

][
𝑄𝑀 +

𝑀∑
𝑘=1

1 
𝑄+ 𝑔𝑘

𝑀∏
𝑘′=𝑘

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘

]
−

𝑀+1∑
𝑘=1 

1 
𝑄+ 𝑔𝑘

𝑀+1∏
𝑘′=𝑘 

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘

=
[
𝑄+ 𝑔𝑀+1

]
𝑄𝑀 +

𝑀∑
𝑘=1

1 
𝑄+ 𝑔𝑘

𝑀+1∏
𝑘′=𝑘 

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘 −

𝑀+1∑
𝑘=1 

1 
𝑄+ 𝑔𝑘

𝑀+1∏
𝑘′=𝑘 

[
𝑄+ 𝑔𝑘′

]
𝑄𝑘−1𝑔𝑘

=
[
𝑄+ 𝑔𝑀+1

]
𝑄𝑀 −𝑄𝑀𝑔𝑀+1 = 𝑄𝑀+1.

Then the loss minimization problem is

min
𝑔

𝑄𝑀∏𝐾
𝑘=1
[
𝑄+ 𝑔𝑘

] , s.t. 𝑔𝑘 ≥ 0 and 
𝑀∑

𝑘=1
𝑔𝑘 ≤ 𝑄.

This is solved by 𝑔𝑘 = 𝑄∕𝑀 . The resulting bids are
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𝑏𝑘|𝑀 =
𝑀∑

𝑘′=𝑘

𝑄𝑘′−𝑘𝑔𝑘′∏𝑘′
𝑗=𝑘

[
𝑄+ 𝑔𝑗

]𝜃 =
𝑀∑

𝑘′=𝑘

1 
𝑀

𝑄𝑘′−𝑘+1∏𝑘′
𝑗=𝑘

[
𝑀+1
𝑀

𝑄
]𝜃

=
𝑀∑

𝑘′=𝑘

1 
𝑀

𝑄𝑘′−𝑘+1[
𝑀+1
𝑀

𝑄
]𝑘′−𝑘+1

𝜃 = 𝜃

𝑀

𝑀∑
𝑘′=𝑘

[
𝑀

𝑀 + 1

]𝑘′−𝑘+1
. □

C.2. Uniform-price auctions

The following theorem proves that there is a unique minimax-loss bid in the constrained uniform-price auction.

Theorem 4 (Minimax-loss bids in constrained uniform-price auction). In the bidpoint-constrained uniform-price auction with 𝑀 bid points, 
the unique minimax-loss bid solves(

𝑞UPA, 𝑏UPA
)
∈min

𝑞′ ,𝑏′
𝑅,

s.t. 𝑞′𝑘𝑏′𝑘 = 𝑅 ∀𝑘 ∈ {1,… ,𝑀} ,

and 
𝑄 

∫
𝑞′
𝑘−1

(
𝑣𝑖 (𝑥) − 𝑏′𝑘

)
+ 𝑑𝑥 = 𝑅 ∀𝑘 ∈ {1,… ,𝑀} .

Proof of Theorem 4. We first prove that the minimax bid (𝑏𝑖, 𝑞𝑖) must solve

𝑏1𝑞1 = 𝑏𝑘𝑞𝑘 for 𝑘 ∈ {1,2,… ,𝑀} , and 

𝑏1𝑞1 =

𝑄 

∫
𝑞𝑘−1

(
𝑣𝑖 (𝑥) − 𝑏𝑘

)
+ 𝑑𝑥 for 𝑘 ∈ {1,2,… ,𝑀 + 1} .

Let 𝑘 denote the largest index for which maximal loss is attained, i.e., either 𝑘 = 𝑀 +1 if sup𝐵−𝑖∈ 𝐿UPA(𝑏𝑖;𝐵−𝑖, 𝑣𝑖) = ∫ 𝑄
𝑞𝑀

𝑣𝑖(𝑥) 𝑑𝑥 or

𝑘 =max
{

𝑘′ ∶ sup 
𝐵−𝑖∈

𝐿UPA
(
𝑏𝑖;𝐵−𝑖, 𝑣𝑖

)
=max

{
𝑅UPA

𝑞𝑘′−1
,𝑅

UPA

𝑞𝑘′

}}
.

Let 𝑘 < 𝑀 +1. We show that 𝑅UPA
𝑞𝑘−1

= 𝑅
UPA

𝑞𝑘
. Suppose 𝑅UPA

𝑞𝑘−1
> 𝑅

UPA

𝑞𝑘
. As 𝑏𝑘 appears in only these two expressions, raising 𝑏𝑘 decreases 

only 𝑅𝑞𝑘−1
and increases only 𝑅

UPA

𝑞𝑘
. Suppose 𝑅UPA

𝑞𝑘−1
< 𝑅𝑞𝑘

. Decreasing 𝑏𝑘 decreases 𝑅
UPA

𝑞𝑘
and increases 𝑅UPA

𝑞𝑘−1
. We do not have to 

worry about the effect on 𝑅UPA
𝑞𝑘

as 𝑅UPA
𝑞𝑘

< 𝑅
UPA

𝑞𝑘
.

Let 𝑘 = 𝑀 +1. Observe that ∫ 𝑄
𝑞𝑀

𝑣𝑖(𝑥) 𝑑𝑥 = 𝑅UPA
𝑞𝑀

≤ 𝑅UPA
𝑞𝑀−1

as underbidding regret decreases in 𝑏𝑘 and 𝑞𝑘−1. As regret is maximized 

by 𝑀 +1, the inequality must hold with equality. The argument of the previous paragraph implies 𝑅UPA
𝑞𝑀−1

= 𝑅
UPA

𝑞𝑀
. The result follows.

We now prove that a unique solution exists. To do so, note that we can express 𝑏𝑘 as a function of 𝑞𝑘−1 and 𝑞𝑘 by solving

𝑏𝑘𝑞𝑘 =

𝑄 

∫
𝑞𝑘−1

(
𝑣𝑖 (𝑥) − 𝑏𝑘

)
+ 𝑑𝑥

for 𝑏𝑘. The left-hand side increases in 𝑏𝑘 and is 0 at 𝑏𝑘 = 0. The right-hand side decreases in 𝑏𝑘, is positive for 𝑏𝑘 = 0, and tends to 0 
as 𝑏𝑘 increases. Thus, there is a unique 𝑏𝑘(𝑞𝑘−1, 𝑞𝑘) that solves the equation. The bid 𝑏𝑘(𝑞𝑘−1, 𝑞𝑘) decreases in 𝑞𝑘−1 and 𝑞𝑘.

We then proceed by expressing 𝑞𝑘′ as a function of 𝑞1 by solving 𝑏1(𝑞0, 𝑞1)𝑞1 = 𝑏𝑘′ (𝑞𝑘′−1, 𝑞𝑘′ )𝑞𝑘′ iteratively for 𝑞𝑘′ , 𝑘′ ∈
{2,3,… ,𝑀}. There is a unique 𝑞𝑘′ for each 𝑞1. Finally, the condition 𝑏𝑀 (𝑞𝑀−1(𝑞1), 𝑞𝑀 (𝑞1))𝑞𝑀 (𝑞1) = ∫ 𝑄

𝑞𝑀 (𝑞1)
𝑣𝑖(𝑥) 𝑑𝑥 pins down 

𝑞1. □

C.3. Design implications

Recall from the end of Section 6 that the minimax-loss bid in the constrained uniform-price auction drops to 0 at a quantity at 
which the minimax-loss bid in the constrained pay-as-bid auction is still positive under flat marginal values. The ambiguous revenue 
comparison is immediate.

Comparison 5 (Ambiguous revenue). Depending on the joint value distribution, both ex post and expected revenues can be higher in either 
constrained auction format.
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Fig. 6. Average revenue (left) and ex post revenue comparison (right) as a function of number of bid points 𝑀 . 

We illustrate the ambiguous revenue comparison in the following numerical example.

Example 6. We simulate bidpoint-constrained auction outcomes for different choices of the number of allowed bid points 𝑀 . In 
the simulated auctions the available quantity is 𝑄 = 100, hence the locations of bidpoints correspond to percentage of aggregate 
supply. We vary the number of bidders from 𝑛 = 2 to 𝑛 = 10. Bidders’ marginal values are flat, 𝑣(𝑞) = 𝜃, where 𝜃 follows a truncated 
lognormal distribution with support 𝜃 ∈ [0.5,2] and mean 1. For each number of allowed bid points, 𝑀 , we first compute constrained 
minimax-loss bids in both the pay-as-bid and uniform-price auctions. In the pay-as-bid auction bids are obtained from the expressions 
in Example 4; in the uniform-price auction bids are obtained from the simple search procedure outlined in Section 6.2.

Fig. 6 plots average auction revenue as a function of the number of bid points 𝑀 . As expected, increasing the number of bidders 
increases the seller’s expected revenue: the highest value of 𝑛 independent draws increases in 𝑛 in expectation. In general, revenue is 
ambiguous in the auction format and the number of bid points 𝑀 . As observed in Examples 4 and 5, bidders in a pay-as-bid auction 
with a single bid point will bid half their value for the full market quantity, and bidders in a uniform-price auction with a single bid 
point will bid more than half their value for less than the full market quantity. Revenue in the pay-as-bid auction is therefore half the 
highest marginal value, while revenue in the uniform-price auction is more than half the second-highest marginal value. It follows 
that expected revenue will be higher in the pay-as-bid auction when both the number of bid points and the number of bidders are 
small.

Although average revenues may be ranked, reverse rankings can be observed ex post. Fig. 6 also compares ex post revenues and 
depicts the share of simulated auctions in which uniform-price revenue is higher than pay-as-bid revenue. As the number of bidders 
increases, the share of auctions in which revenue is higher in the uniform-price auction increases. Low-revenue outcomes mainly 
appear in uniform-price auctions with two bidders, and these ``collusive'' outcomes are less likely when there are many bidders. The 
uniform-price auction dominates the pay-as-bid auction with ten bidders in terms of revenue in expectation and ex post in the majority 
of auctions. The ambiguous, setting-dependent revenue ranking is in line with empirical results on multi-unit auctions.35 Nonetheless, 
it is generally true that increasing the number of bidders increases the performance of the uniform-price auction relative to the pay

as-bid auction. Because initial bids are relatively high in the uniform-price auction and bids are relatively inelastic, increasing the 
number of bidders has strong upward influence on the market-clearing price, and thus on revenue. ◀

Fig. 6 reveals that expected revenues can increase or decrease in the number of bidpoints 𝑀 . While a general analysis is beyond 
the scope of the paper, we provide the optimal 𝑀 in two special cases.

Proposition 7. When all bidders have flat marginal values, then the welfare-maximizing number of bid steps is 𝑀 = 1. When there are 
infinitely many bidders, then revenue is maximized by 𝑀 as large as possible.

Proof. In the case of flat marginal values, it is efficient that the bidder with the highest type wins everything. Any auction selects 
the bidder with the highest type as the winner when 𝑀 = 1.

When revenue is the objective and there are many bidders, then each bidder wins at most an arbitrarily small quantity. Since 
𝑏(0) then determines revenue and 𝑏(0) is maximized by 𝑀 =∞ (because otherwise the bid is an average across lower values), the 
revenue-maximizing choice of 𝑀 does not constrain the bidders. □

35 See Pycia and Woodward (2025) for a summary of the ambiguous revenue rankings obtained in the empirical literature.
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Appendix D. Last accepted bid uniform-price auction

In this appendix, we provide the details on bidding in the last accepted bid uniform-price auction where bidders demand up to 
two units. Building on the analysis of the first rejected bid uniform-price auction in Section 3, we only provide the key steps of the 
analysis the uniform-price auction with the last accepted bid as the market-clearing price. We again restrict attention to bids below 
value: 𝑏𝑖𝑗 ≤ 𝑣𝑖𝑗 for 𝑗 = 1,2.

Case 1: zero units. As in the pay-as-bid auction, if the bidder wins zero units they know that they have underbid the two opponent 
bids. Their bids are most suboptimal if they could marginally increase their bid and win as many units as they desire, in which case 
loss is [(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+

]
− 0 =

(
𝑣𝑖1 − 𝑏𝑖1

)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+ .

The worst case bid distribution puts the two highest opponent bids marginally above 𝑏𝑖1.

Case 2: one unit. Conditional on winning one unit, the bidder overbids if 𝑏𝑖1 sets the market-clearing price (and 𝑐1 = 𝑣𝑖1 and 𝑐2 = 0) 
and underbids if the market-clearing price is just above 𝑏𝑖2 (and 𝑐1 = 𝑐2 = 𝑣𝑖2 + 𝜖). In this case, loss is

max
{

𝑏𝑖1,
(
𝑣𝑖2 − 𝑏𝑖2

)
+

}
.

Case 3: two units. When the bidder wins two units, they set the market-clearing price. In this case, bids are most suboptimal when 
the bidder could have reduced bids to (almost) zero without losing any units; then loss is[(

𝑣𝑖1 − 0
)
+
(
𝑣𝑖2 − 0

)]
−
[(

𝑣𝑖1 − 𝑏𝑖2
)
+
(
𝑣𝑖2 − 𝑏𝑖2

)]
= 2𝑏𝑖2.

Maximal loss is then

max
{(

𝑣𝑖1 − 𝑏𝑖1
)
+
(
𝑣𝑖2 − 𝑏𝑖1

)
+ , 𝑏𝑖1, 2𝑏𝑖2, 𝑣𝑖2 − 𝑏𝑖2

}
.

Due to the different signs, maximal loss is minimized by equalizing at least some of the conditional losses; this contrasts the pay-as-bid 
auction, in which maximal loss is minimized by equalizing all of the conditional losses. Pairwise equalization of maximum loss gives 
a minimax-loss bid vector,

𝑏LAB
𝑖1 =

{
1
3

(
𝑣𝑖1 + 𝑣𝑖2

)
if 𝑣𝑖1 ≤ 2𝑣𝑖2,

1
2𝑣𝑖1 otherwise;

and 𝑏LAB
𝑖2 =

𝑣𝑖2
3 

.

The first bid can be found by equalizing the underbidding regret conditional on losing the auction 𝑣𝑖1 − 𝑏𝑖1 + (𝑣𝑖2 − 𝑏𝑖1)+ with the 
overbidding regret conditional on winning one unit 𝑏𝑖1. The second bid can be found by equalizing the underbidding regret conditional 
on winning one unit 𝑣𝑖2 − 𝑏𝑖2 and the overbidding regret conditional on winning two units 2𝑏𝑖2.

While minimax-loss bids must minimize conditional regret for some unit, this will not in general determine the minimax-loss bid 
for all units. With demand for two units, worst-case loss minimization uniquely determines the bid for the first unit, but the bid for 
the second unit need only lie within the bounds 𝑣𝑖2 − 𝐿LAB ≤ 𝑏𝑖2 ≤ 𝐿LAB∕2, where 𝐿LAB = 𝑏𝑖1 is minimax loss in the uniform-price 
auction. Note the difference to the FRB auction where the last bid is uniquely determined by global regret minimization and the 
first bid from local regret minimization. As in the FRB uniform-price auction, we view the selection that optimizes the entire bidding 
function based on ``local'' worst cases natural.

Data availability
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