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Abstract

The Combinatorial Multi-Round Ascending Auction (CMRA) is a new auction
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We characterize ex-post equilibria that feature auction-specific forms of truthful
bidding, demand expansion, and demand reduction for settings where bidders have
either decreasing or non-decreasing marginal values. In particular, we show that
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1 Introduction

Auction sales of radio spectrum have served as a powerful engine for auction format

innovation. These high-stake sales often involve heterogeneous spectrum bands and re-

quire flexible and robust auction formats. For example, the Simultaneous Multi-Round

Auction (SMRA), the Combinatorial Clock Auction (CCA), and the Deferred Accep-

tance Auction, all trace their origins to spectrum auctions. Many dynamic auctions work

well—they find e�cient outcomes, give bidders decent incentives to bid truthfully, and

are fairly robust to collusion—when the goods for sale are substitutes (Kelso Jr and

Crawford, 1982; Milgrom, 2000). However, in the presence of complements—which is

very common in spectrum allocation—auction design becomes substantially more di�-

cult. To help bidders avoid ending up with undesirable combinations of goods, many

combinatorial auction formats, such as the CCA and the sealed-bid combinatorial auc-

tion, allow bidders to express preferences over packages. In its 2016 spectrum auction,

the Danish Energy Agency (DEA) pioneered the Combinatorial Multi-Round Ascending

Auction (CMRA) format developed by the UK-based consultancy DotEcon Ltd. to sell

several spectrum blocks in the 1800 MHz band (DotEcon, 2016). Since then, the CMRA

has been used twice again by the DEA and once by the Norwegian regulator (Nkom).

The CMRA works as follows. There is a price clock for each good. In each clock

round, bidders can report a headline demand for a single package which is priced linearly

at clock prices. The novel feature of the CMRA is that in each clock round, bidders can

also submit additional (package) bids at or below the clock prices (and subject to an

activity rule). As a result, the CMRA does not work like a standard ascending auction

because even at high clock prices bidders can reveal demand at low prices using the

additional bids. The auction ends when there exists a revenue-maximizing allocation in

which exactly one bid from every bidder is accepted.

There are two key di↵erences between the CMRA and the CCA, arguably the most

frequently used combinatorial auction format in spectrum sales: the CMRA has no

supplementary sealed-bid round (while the CCA does) and the CMRA allows for non-

linearly priced additional bids in the clock stage (while the CCA does not). In the

presence of complements, some form of non-linear pricing might be necessary to clear

the market (Bikhchandani and Ostroy, 2002). To this end, the CCA typically uses Vick-

rey–Clarke–Groves (VCG)-like pricing in the supplementary round. By contrast, the

CMRA allows bidders to submit non-linear (pay-as-bid-priced) additional bids in the

clock phase. Hence, the market can clear in the clock phase, making the supplementary

phase unnecessary.1 Another di↵erence is that the (clock phase of the) CCA ends when

there is no excess demand for any good whereas the CMRA ends when the auctioneer

can accept a bid from each bidder in a revenue-maximizing allocation.

1The combinatorial auction due to Porter et al. (2003) also features no supplementary round.
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There are several reasons why one might prefer to use an auction format with some of

the features of the CMRA in practice. First, the CCA’s supplementary round and pricing

rule create uncertainty about what the bidders will win and what they will pay. Avoiding

the supplementary round can therefore help bidders discover prices more gradually and

deal more easily with their budget constraints (Janssen et al., 2017). Second, submitting

mutually exclusive bids in the supplementary round (in order to achieve the most preferred

auction outcome) can be taxing for bidders. Indeed, bidders might prefer the ability to

revise the packages they bid on as clock prices change. Since the CMRA elicits demand

information gradually, one might hope to overcome the “missing bids” problem that has

been observed in CCAs (Bichler et al., 2013).

While a number of theoretical papers have explored the CCA, there has not yet been

an analysis of the CMRA. This paper attempts to fill this gap.

In our baseline model, there are two bidders and a single divisible good. We allow a

cap, which is a typical feature in spectrum auctions; no single bidder is allowed to win

the entire supply. Bidders’ marginal utilities for the good can be decreasing (capturing

substitutes) or non-decreasing (capturing independent goods or complements). When

we look at strategic bidding, we focus on equilibria in proxy strategies (Ausubel and

Milgrom, 2002).

As a warm-up, we examine the e↵ects of truthful (non-strategic) bidding. We identify

two variants of truthful bidding in the CMRA. First, the headline demands can be truthful

while no additional bids are placed. We call this strategy clock-truthful as it mimics

truthful bidding in a clock auction. The second variant of truthful bidding features

truthful headline demands and additional bids. Specifically, under this so-called CMRA-

truthful strategy, bidders submit additional bids that give them the same surplus as the

headline demand (so bidders are indi↵erent between winning with their headline demand

or any additional bid). As bids can only be non-negative, bidders do not immediately

bid on all packages; the range of packages that receives non-negative bids increases as the

clock price goes up. The CMRA-truthful strategy was explicitly proposed by the auction

designers (DotEcon, 2016).

The first insight is that in the presence of truthful additional bids the auction ends

at a lower clock price than in their absence. Under CMRA-truthful bidding, bidders

express true marginal values on a larger range of quantities at lower clock prices. It is

then natural that the auction ends at a lower clock price and with lower revenue. Indeed,

we show that both properties hold irrespective of bidders having increasing or decreasing

marginal values (Propositions 1 and 2), except for an ambiguous revenue ranking in the

non-decreasing marginal values case with asymmetric caps.

The second insight is that truthful additional bids can restore e�ciency. Consider

clock-truthful bidding when bidders have non-decreasing marginal values. Bidders de-

mand the maximum capped quantity until they are indi↵erent between winning it and
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winning nothing; they then drop demand to zero. Hence, during the auction they do

not express any marginal values between zero and the maximum allowed quantity; the

auction ends with excess supply. However, under CMRA-truthful bidding bidders use

the additional bids to report their marginal values for quantities they never bid on in

the clock auction, which leads to the e�cient allocation. Propositions 1 and 2 show

that CMRA-truthful bidding leads to the e�cient allocation irrespective of increasing or

decreasing marginal values.

Our main results concern strategic bidding in the CMRA. When marginal values are

non-decreasing, CMRA-truthful bidding is an ex-post equilibrium when the bidders’ caps

are exactly symmetric. (This continues to be the case with any number of bidders.) With

(arbitrarily small) asymmetries in the bidders’ caps, however, CMRA-truthful bidding is

no longer an equilibrium (Theorem 1). CMRA-truthful bidding is not an equilibrium with

decreasing marginal values due to a free-riding and threshold problem (Proposition 3).

Moreover, clock-truthful bidding is never an equilibrium: with decreasing marginal values,

bidders have demand reduction incentives as in other multi-unit auctions (Ausubel et al.,

2014) and with non-decreasing marginal values the weaker bidder has an incentive to

close the auction early by bidding on the units left over by the stronger bidder.

Next, we identify a simple strategy that forms an ex-post equilibrium (Theorem 2).

With symmetric caps, the (what we call constant) strategy prescribes a constant headline

demand for the maximum (capped) quantity and a single additional bid of zero (i.e.,

the reserve price) for the residual supply at a relatively high clock price. The strategy

thereby resembles clock-truthful bidding under non-decreasing marginal values except for

the single additional bid. In this equilibrium and with decreasing marginal values, the

bidders expand demand so that the stronger bidder wins a larger quantity than what

she would have won in the e�cient allocation. With non-decreasing marginal values, the

equilibrium outcome is as under CMRA-truthful bidding and also as in a VCG auction

under truthful bidding. With asymmetric caps, both bidders’ headline demand is the

second highest cap and the ex-post equilibrium exists as long as the utility for quantities

between the two caps is not too di↵erent.

A final and crucial theoretical insight for practical auction design is that bidders can

use additional bids to collude. Suppose each bidder plays the constant strategy, but also

places an additional bid of half the initial clock price for half of the available quantity in

the initial clock round. As both bidders winning half of the supply is (weakly) revenue-

maximizing, the auction ends immediately by assigning half of the supply to each bidder at

the initial clock price. We show that this strategy profile forms an equilibrium if bidders

are su�ciently symmetric (Theorem 3). Surprisingly, this collusive demand reduction

strategy carries no risk. If the other bidder does not work out the collusive bidding

strategy and the auction does not end in the first round, the bidder is unconstrained in

her bids in later rounds. In any case, the weaker bidder loses nothing by placing a zero
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additional bid on half of the supply.

We then argue that the driving force behind the collusion incentives is the activity rule

used in the CMRA. Activity rules typically prevent bidders from underreporting their

demand early in the auction (Ausubel and Baranov, 2020; Milgrom, 2000). However,

the activity rule currently used in the CMRA only transforms headline demands into

constraints on the bid function. We propose an alternative activity rule that makes

the risk-free demand reduction strategy infeasible: Our alternative activity rule treats

additional bids and headline demands identically by transforming both into constraints

on bidding. The alternative activity rule keeps the other equilibria we discussed intact;

however, it might force the bidders to revise the bids on more packages throughout the

auction.

Finally, we connect our theoretical predictions to outcomes of CMRAs in practice.

We look at the outcomes of three Danish spectrum auctions held between 2016 and

2021. As the DEA only publishes data on allocations and total bidder payments, we

try to reverse-engineer whether headline demands or additional bids were winning in the

auctions. We then use these insights to speculate whether the possible bidding dynamics

were consistent with our theoretical predictions. It appears that in the 2016 auction only

headline demands won, which suggests that bidders behaved as if they were in a clock

auction. In the 2019 and 2021 auctions, some additional bids were winning, suggesting

that bidders were using much richer strategies in later auctions. However, we do not find

any evidence that bidders use the risk-free collusion strategy that we outline. We also

explain what our results mean for patterns of bidding dynamics and how our theoretical

predictions could be tested on actual CMRA bidding data.

The literature on combinatorial auctions is vast. Combinatorial auctions were in-

troduced in the context of selling airport take-o↵ and landing slots by Rassenti et al.

(1982). Following the success of the SMRA for early US spectrum auctions in 1990s

(Milgrom, 2000), license complementarities in subsequent sales were substantial enough

to warrant new auction formats. As a result, a number of combinatorial auction designs

were proposed (Parkes and Ungar, 2002; Porter et al., 2003).2

A major breakthrough for practical auction design was the development of the CCA

(Ausubel et al., 2006; Maldoom, 2007) which quickly became one of the dominant auction

formats for spectrum sales and beyond. The CCA was theoretically analyzed by Levin and

Skrzypacz (2016), Janssen and Karamychev (2016) and Janssen and Kasberger (2019).

We use many modelling features from the elegant analysis of Levin and Skrzypacz (2016)

as well as their focus on proxy strategies. Unlike many other papers, we consider both

increasing and decreasing marginal values.

On the theoretical side, many papers have proposed innovative dynamic auction for-

2Palacios-Huerta et al. (2021) o↵er an excellent recent overview of the use of combinatorial auctions,
including CMRAs, in practice.
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mats for homogeneous goods (Ausubel, 2004), heterogeneous substitutes (Ausubel, 2006),

heterogeneous complements (Sun and Yang, 2014; Baranov et al., 2017) as well as general

valuations (Mishra and Parkes, 2007) in which truthful bidding is an ex-post equilibrium

and final payments that coincide with VCG payments.3 However, most of these formats

are not used in practice. What makes the CMRA interesting to study is that it (i) has

been used in practice; (ii) has an unusual format due the additional bids; (iii) admits a

variety of ex-post equilibria, but (iv) has a truthful equilibrium only in certain cases.

A large literature has studied demand reduction in multi-unit auctions (e.g., Brusco

and Lopomo (2002); Grimm et al. (2003); Ausubel et al. (2014)). The main di↵erence is

that in our case the demand reduction strategy is risk-free while in other auction formats

it is not. We also observe demand expansion in equilibrium, which, to the best of our

knowledge, has not been noted in auctions with pay-as-bid pricing.

We proceed as follows. The next section illustrates the dynamics of the clock auction

and the CMRA under di↵erent bidding strategies. Section 3 presents the formal model

and the auction rules. In Section 4, we analyze non-strategic truthful bidding and then

turn to strategic bidding in Sections 5. Section 6 describes the risk-free collusive strategy

and proposes an alternative activity rule to deal with it. Section 7 explains how to use

bidding data to test which bidding strategies might have been played. We describe how

the CMRA performed in the Danish spectrum auctions in Section 8. Section 9 concludes.

All omitted proofs are in Appendix A. The extension to the case of any number of bidders

is Appendix B. Further details about the Danish auctions are in the online appendix.

2 Illustrative Example: Clock Auction vs. CMRA

To make the CMRA more accessible, we present a simple example that demonstrates

its rules and workings. As the CMRA builds on the clock auction, we first contrast the

CMRA with the simplest possible clock auction to shed some light on the role of the

CMRA’s additional bids. As we explore the example further, we illustrate some of our

main findings.

There are four identical lots for sale and two bidders. Bidders are symmetric: The

valuation of each lot is $30 and the valuations are additive for each bidder. There is a

symmetric cap of three lots for either bidder.

In a (standard) clock auction, the price starts at $0 and increases as long as there is

excess demand. Under truthful bidding, each bidder demands three lots as long as the

clock price is below $30. At $30 the clock stops because both bidders drop their demands

to 0. The bidders have expressed demand for three units which can be allocated to either

bidder, therefore there is excess supply of one lot. Hence, the final allocation is ine�cient.

3Sun and Yang (2009) and Teytelboym (2014) proposed dynamic auctions for selling restricted classes
of substitutes and complements without o↵ering a strategic analysis.
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The auction revenue is $90.4

Next, consider how the CMRA would run. Bidders can mimic their strategies in the

clock auction by only submitting a headline demand (and no additional bids) at each

clock price. If the headline demands are truthful—this is the clock-truthful setting—and

the price is below $30, then the revenue-maximizing allocation involves only one bidder;

therefore, the price continues to increase. At $30, bidders drop their headline demand to

zero lots. Now the revenue-maximizing allocation can involve a bid from both bidders:

we can allocate three units to one bidder and no units to the other bidder. Therefore, the

outcome is the same as in the clock auction. It is easy to see why clock-truthful bidding

does not constitute an equilibrium: Bidders do not get any surplus from winning three

lots, so a better strategy is to submit a headline demand of one unit in the initial round.

This would end the auction immediately with both bidders having a positive payo↵.

Now consider the presence of additional bids in the CMRA (headline demands con-

tinue to be three units at prices below $30). Figure 1 illustrates the CMRA-truthful

strategy in our example. At any clock price up to $10, the bidder only submits a head-

line demand of three units. At the clock price of $10 the bidder is indi↵erent between

winning three lots at linear prices (with a surplus 3 ⇥ $20 = $60) and winning two lots

at a price of zero. Hence, the bidder submits an additional bid for a total of $0 for two

lots (note that the price in this additional bid is below the clock price). Indeed, if both

bidders submit such bids, there exists an allocation of all four lots to both bidders such

that exactly one bid is accepted from each bidder, but it is not revenue maximizing (i.e., it

raises $0 compared to the allocation of three units to one bidder which raises $30). Hence
the auction continues. As the clock price increases, the bidder changes the additional bid

for two lots. For example, at a clock price of $12, the bidder submits an additional bid

of $6 for two lots. At a clock price of $20, the bidders place an additional bid of $30 for

two lots and add an additional bid of $0 for one lot; the surplus from each bid is $30.
The auction now ends because there are now revenue-maximizing allocations in which

exactly one bid of each bidder is accepted: either the bidders’ additional bids on two lots

are accepted or one bidder’s headline demand of three lots and one bidder’s additional

bid for one lot are accepted. In any case, the final allocation is e�cient but revenue

is lower ($60 vs. $90) than in the clock auction. We show that, perhaps surprisingly,

CMRA-truthful strategies constitute an ex-post equilibrium in proxy strategies whenever

bidders’ marginal values are constant (as in this example) or increasing and the caps are

symmetric. However, the CMRA-truthful equilibrium does not survive any asymmetry

in bidders’ caps.

There turns out to be another equilibrium in which the bidders can risk-freely collude.

4Depending on the design of the clock auction, it is possible that when bidders drop their demand
to zero simultaneously, the auctioneer allocates nothing to the bidders. In this case, imagine that the
valuation of one of the bidders is $30+✏. Note that there are also installations of the clock auction that
would allow market clearing.
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Figure 1: Headline demands and additional bids under CMRA-truthful bidding strategy
in the illustrative example.

Notes: Above the price axis: Diamonds indicate the number of units in the bid; headline
demands are at the clock price p and additional bids are at stated prices. Below the price axis:
Surplus from each individual bid. The additional bids are such that the bidder is indi↵erent
between winning with the headline demand and the additional bid.

In the first round of the auction, the bidders follow the CMRA-truthful strategy, but also

add an additional bid for two lots at a price of $0. The auction ends immediately and

both bidders win two units each at a price of zero. If the auction does not end in the first

round, the bidders submit CMRA-truthful bids in all subsequent rounds and the auction

will proceed as in case of CMRA-truthful equilibrium. Note that this first-round demand

reduction carries no risk for the bidders in the sense that bidders do not have to give

up “eligibility” to (potentially) end the auction early. In other words, they do not have

to lower their headline demands to implement a collusive outcome. The clock auction,

on the other hand, allows demand reduction only in headline demands; hence, lowering

demand to two lots in early rounds does not allow the bidder to win more units later.

In Section 6, we propose an alternative activity rule that prevents bidders from following

this collusive strategy.

The model used in the paper is di↵erent from the illustrative example in three ways.

First, we assume for tractability that the good is divisible. Second, we do not assume that

marginal values are constant. Instead, we also allow for non-decreasing and increasing

marginal values. Third, we allow for bidders to have asymmetric caps and incomplete

information about each others’ types.

3 The Combinatorial Multi-Round Ascending Auc-

tion

There are two bidders (denoted by i 2 {1, 2}) and one unit of a perfectly divisible good

whose quantity is denoted by x 2 [0, 1]. (We deal with the case of any number of bidders

in Appendix B.) In terms of the auction rules, we map the rules of the 2016 Danish
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spectrum auction for the 1800 MHz band to our setting.

Clock and headline demands. The core of the CMRA is a clock auction: There

is a price clock p 2 R+ that ticks upwards, and bidders report their demands at each

clock price p. The demanded quantity is called the headline demand. Bidder i’s headline

demand at clock price p is denoted by hi(p) 2 [0, 1].

Additional bids. An innovation of the CMRA is that bidders can submit additional

bids in each clock round. Formally, the additional bid for quantity x when the clock price

is p is the price (willingness-to-pay) Ai(x; p) 2 R+ [ {�1}. In contrast to the headline

demands, the additional bids do not have to be linear in clock prices. Instead, they must

be below clock prices, i.e., Ai(x; p)  px and must satisfy the activity rule described

below. For quantities that do not receive any additional bids, we define the additional

bids to be negative, i.e., Ai(x; p) = �1 if bidder i has not submitted an additional

bid on quantity x. The auction rules specify that bids on the empty package must be

non-positive.

At each clock price, the headline demand and the additional bids create a bid function

Bi : [0, 1] ⇥ R+ ! R+ [ {�1} that maps quantities and the clock price to bids. The

bid function Bi(·; p) is then the collection of highest bids expressed in the course of the

auction by bidder i at clock price p. For the headline demand the bid function simply

gives us Bi(hi(p); p) = p · hi(p) while for the additional bids the bid function is defined

as Bi(x; p) = supp̃p Ai(x; p̃).

Closing rule. The auction ends if there is a feasible revenue-maximizing allocation in

which a bid by every bidder is accepted. Formally, the auction ends at clock price p if

there is a non-negative allocation (x1, x2) 2 [0, 1]2, where (x1, x2) is such that

1. (x1, x2) 2 argmax(x̃1,x̃2)2[0,1]2, x̃1+x̃21 B1(x̃1; p) + B2(x̃2; p), and

2. Bi(xi; p) � 0 for i 2 {1, 2}.

The second requirement guarantees that bidders win nothing only if they bid on zero

quantity because the bid on the empty package must be zero by the auction rules above.

If there is no such allocation, the auction continues by raising the clock price p.

It is worth comparing the closing rule to those of the clock auction and the CCA. The

clock auction ends as soon as there is no excess demand. A bidder wins nothing only

if she drops her demand to zero. The final allocation need not maximize revenue as it

does not take past bids into account (unlike the CMRA). The clock phase in the CCA

ends when there is no excess demand. Depending on the specific activity rules and the

final clock round, it is possible that bidders do not win anything. The CCA selects the

9



final allocation as in closing rule condition (1) above (i.e., ignoring condition (2)), but

the bidders’ payments are weakly lower than Bi due to VCG-pricing.

Activity rule. The activity rule currently used in the CMRA translates the headline

demands into constraints on the additional bids. Let p < p0 and hi(p) > hi(p0). Suppose

p was the highest price at which hi(p) was demanded and that for all prices p̃ > p bidder

i demanded hi(p0). For x 2 (hi(p0), hi(p)) the “relative cap” activity rule constrains

Bi(x; p̃) from above by5

Bi(x; p̃)  Bi(hi(p
0); p̃) + p0(x� hi(p

0)).

Strategies. A proxy strategy (hi, (Ai(·; p))p�0) for bidder i consists of a headline demand

hi and a collection (Ai(·; p))p�0 of additional bids indexed by clock prices p. Similar to

Levin and Skrzypacz (2016), we study equilibria in proxy strategies to focus on outcomes

that are specific to the CMRA. Levin and Skrzypacz (2016) point out that dynamic

auctions typically feature other equilibria in which certain actions trigger reactions of the

other bidders. The restriction to proxy strategies avoids the specification of (updated)

beliefs about the other bidder’s type, which does not play a major role in our analysis

due to our focus on ex post equilibria.6

Information. In each round, bidders learn (i) the current clock prices, (ii) whether their

previous headline demand appeared in a revenue-maximizing allocation, (iii) whether they

appeared in a revenue-maximizing allocation. Due to our focus on proxy strategies, (ii)

and (iii) will play no role to our analysis.7

Payo↵s. Bidder i has a quasilinear utility function Ui(x)�px, where Ui(x) is the value of

winning quantity x. Let ui(x) denote the marginal value, so Ui(x) =
R x

0 ui(y)dy. Marginal

values are strictly positive. There is a cap �i 2 (1/2, 1) such that bidder i can win at most

�i.8 Without loss of generality, let �1 � �2. Spectrum caps were present in all real-world

implementations of the CMRA. Note that some auctions feature symmetric caps while

other auctions restrict bidders asymmetrically. Hence, both cases are of interest.

5If headline demand is x and lowered continuously at clock price p, then the slope of the bids at x
can be at most p.

6Moreover, proxy strategies only specify “on-path” behavior; as the proxy strategy rules out certain
bidding histories, the strategy does not specify behavior after such histories. Specifically, there are
sequences of additional bids that put non-trivial constraints on the bidding rules. Specifying behavior
in such cases is notationally complex. We avoid these issues by considering proxy strategies.

7Note that in the 2021 Danish spectrum auction bidders learned (i)–(iii), while in the 2016 and 2019
auctions they only learned (i).

8An alternative interpretation is that �i is bidder i’s capacity (Ausubel et al., 2014) or satiation point
where marginal values are at or below the reserve price. In this case, we would define Ui(x) to be strictly
increasing on [0,�i] and flat on (�i, 1], that is, Ui(x) = Ui(�i) for x 2 [�i, 1].
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The value functions are twice continuously di↵erentiable and parameterized by pri-

vate types ✓i, i.e., Ui(x) = U(x; ✓i), where ✓i 2 [✓i, ✓i] and ✓i, ✓i 2 R+. We say that

bidder i is stronger than bidder j if ✓i � ✓j. Let values be strictly increasing in ✓i, i.e.,

@U(x; ✓i)/@✓i > 0 for all x 2 [0,�i]. Let the marginal values be strictly increasing in

✓i, that is, @U/@x@✓i > 0. We assume that there are at least three types, but do not

otherwise specify the joint type distribution due to our focus on ex-post equilibria.

Our analysis distinguishes decreasing marginal values (capturing substitutes) and non-

decreasing marginal values (capturing independent goods and complements). If bidders

have decreasing marginal values on [0,�i], then we also assume that the e�cient allocation

is interior, i.e., 1��j < x?
i < �i.9 The following assumption contains a su�cient condition.

Assumption 1 (Decreasing Marginal Values). Bidders have decreasing marginal

values if u0
i(x) < 0 for x 2 [0,�i] and ui(�i) < uj(1 � �i) for i, j = 1, 2 and all feasible

type profiles.

When bidders have decreasing marginal values, the e�cient allocation x? solves maxU1(x1)+

U2(x2) subject to x1 + x2  1. The assumptions imply that x?
1 = 1 � x?

2 and that

u1(x?
1) = u2(1� x?

1).

We also analyze settings with non-decreasing marginal values.

Assumption 2 (Non-decreasing marginal values). Bidders have non-decreasing

marginal values if u0
i(x) � 0 for x 2 [0,�i] for i = 1, 2.

The e�cient allocation must lie on the boundary due to non-decreasing marginal

values. Recall that we assume that �1 � �2 > 1
2 . If ✓1 � ✓2, then (�1, 1 � �1) is the

e�cient allocation. To see this, observe that U1(�1)+U2(1��1) > U1(1��2)+U2(�2) is

equivalent to
R �1

1��2
u1(x)dx >

R �2

1��1
u2(x)dx. Both integrals are over the same mass but

the left-hand side integrates over higher quantities. As the marginal values are increasing

in ✓, the inequality holds. In the case of symmetric caps, a similar argument shows that

it is e�cient that the stronger bidder wins �. Now, if ✓2 > ✓1, then in principle both

allocations (�1, 1 � �1) and (1 � �2,�2) can be e�cient. Intuitively, (�1, 1 � �1) can be

e�cient if U1(�1) is much higher than U2(�2) due to the asymmetric caps and increasing

marginal values while there may be not much di↵erence between U1 and U2 for x  �2.

4 Outcomes under non-strategic truthful bidding

In this section, we investigate outcomes under non-strategic truthful bidding. Our moti-

vation is three-fold. First, truthful strategies allow us to introduce the workings of the

CMRA without the need to keep track of incentives. Second, truthful strategies provide

9Corner solutions in which one bidder is much stronger than another merely add to casework without
a↵ecting the economic content of our results.
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a natural benchmark in auctions with many bidders. Lastly, these strategies set the stage

for the strategic incentives studied in the next section.

We compare the simple clock auction to the CMRA to isolate the e↵ect of the addi-

tional bids. As the CMRA is built on a clock auction, any clock auction behavior is also

feasible in the CMRA; bidders only have to ignore the possibility of additional bids.

In the clock auction, the meaning of truthful bidding is unambiguous. Bidders can

demand only a single quantity at a time, and this quantity is utility-maximizing if it is

truthful. Similarly, the headline demand hi(p) in the CMRA is truthful at current price

p if hi(p) 2 argmaxx Ui(x) � px. We further say that a bidding strategy in the CMRA

is clock-truthful if the bidder only submits truthful headline demands at all clock prices

and submits no additional bids.

The CMRA’s additional bids allow richer behavior that may be considered truthful.

Truthful headline demand at all prices elicits a demand curve that reflects the bidder’s

marginal values. This motivates us to interpret truthful bidding in the CMRA as express-

ing true marginal values for all shares for which this is possible at a given clock price.

The following “truthful” bidding strategy was described by DotEcon:

The proposed auction design allows bidders to follow alternative bid strategies

that give them more control over their risks. For instance, a bidder may submit

many bids at all times with a view to maximise surplus. Making a headline

bid for the surplus-maximising package and then for all other packages with a

bid amount equal to the value of the package minus the surplus on the headline

bid would achieve this. (DotEcon, 2016)

In other words, DotEcon suggests that bidders place an additional bid for x such that

the bidder is indi↵erent between winning x for a payment of Ai(x; p) and the headline

demand at price p. Intuitively, the bidder would then bid true marginal values for all

shares for which this is possible with non-negative bids. Formally, we say that a bidding

strategy is CMRA-truthful if the headline demands are truthful and

Ai(x; p) =

8
<

:
Ui(x)� Vi(p) for x 2 [U�1

i (Vi(p)),�i]

�1 otherwise,
(1)

where Vi(p) = maxx Ui(x) � px. The additional bids are generically non-linear in clock

price p.

The CMRA-truthful bids have the following properties. For p = 0, the truthful

demand is �i so that Vi(0) = Ui(�i) and U�1
i (Ui(�i)) = �i; only �i receives a non-

negative bid at p = 0. The envelope theorem implies that Vi(p) decreases in p, implying

that the range of quantities that receive non-negative bids increases in p. Moreover, the

bid on a given quantity increases in the clock price. Note that as p tends to infinity,
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Vi(p) converges to 0. Thus, for su�ciently high prices the bidder bids on all quantities

in [0,�i] and the additional bids are the true valuation levels. Hence, the domain of the

non-negative additional bids is well defined. For su�ciently low p, the bidders shade

their bids by bidding less than value without distorting marginal values for quantities for

which a positive bid is made.10

4.1 Decreasing marginal values

We now analyze auction outcomes when bidders have decreasing marginal values.

Proposition 1. Suppose that marginal values are decreasing.

(i) Clock-truthful bidding in the CMRA leads to the e�cient allocation. The clock ends

at clock price p? = u1(x?
1) = u2(x?

2).

(ii) CMRA-truthful bidding leads to the e�cient allocation and ends the auction at a

clock price lower than p?.

(iii) Ex-post revenue under CMRA-truthful bidding is lower than under clock-truthful

bidding.

With decreasing marginal values, truthful bidding in the clock auction and clock-

truthful bidding in the CMRA both lead to the e�cient allocation. The revenue is p?.

CMRA-truthful bidding also leads to the e�cient allocation but ends the auction at a

lower price and at lower revenue. The reason why the CMRA ends earlier than the clock

auction with the e�cient allocation is that bidders express true marginal values for more

quantities at lower clock prices.

Figure 2 illustrates Proposition 1 in the symmetric-caps case. Figure 2a shows the

headline demands and additional bids at various clock prices. Bidder 1 is stronger and her

e�cient share is x?
1 >

1
2 while bidder 2’s e�cient share is x?

2 <
1
2 . Solid lines are headline

demands hi(p) and dashed lines are additional bids Ai(x; p) as in Eq. (1). Figure 2b

depicts the respective revenue from feasible allocations. The solid line B1(x; p) +B2(1�
x; p) shows revenue for allocations in which a bid of each bidder is accepted since this

is required by the CMRA closing rule (recall that bids are �1 for shares that bidders

do not bid on). The dashed line is max{B1(x; p), B2(1 � x; p)} for allocations that do

not receive non-negative bids from both bidders: this is revenue that can be obtained by

accepting only one bidder’s bid.

Let us consider how the bids and allocations change as the clock price increases. As

a benchmark, consider a simple clock auction (or a CMRA with clock-truthful bidding).

10The CMRA-truthful strategy can be seen as a family of “truncation reports” as defined by Day and
Milgrom (2008).
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We simply increase the clock price and follow the headline demands in solid lines in

Figure 2a. The auction ends at clock price p? with market clearing.

Under CMRA-truthful bidding, both bidders submit headline demands and additional

bids. When the clock price p is low, only quantities close to � receive additional bids.

• Clock price p1. At this clock price, each bidder’s headline demand is �, yielding

surplus Ui(�) � �p1. Recall that the additional bids are given by Eq. (1). At

p1, the additional bids range from �p1 (for a quantity �) to zero (for a smaller

quantity that keeps the bidder indi↵erent). At p1, there is no feasible allocation

that receives bids from both bidders (the dashed lines do not intersect in Figure 2b).

The auction continues as it is not possible to accept a bid by each bidder in the

revenue-maximizing allocation.

• Clock price p2. This is the lowest price at which both bidders bid on their respective

e�cient quantities. Bidder 1 submits a strictly positive additional bid on x?
1 at clock

price p2, while bidder 2 submits an additional bid of 0 on x?
2. From now on the

e�cient allocation can in principle be allocated as it receives bids from both bidders.

Figure 2b reveals, however, that the e�cient allocation is not revenue-maximizing.

Bidder 1’s headline demand is still �, and allocating � to bidder 1 raises a revenue

of �p2. Observe that bidder 2 bids less than �p2 on � because marginal values are

decreasing and because � is not the headline demand. As bidder 2 does not bid on

1�� at clock price p2, the revenue-maximizing allocation features only bids by one

bidder and the auction continues.

• Clock price p3. Both bidders have now raised their additional bids on their respec-

tive e�cient share. As we can see in Figure 2b, the e�cient allocation x? locally

maximizes revenue. However, x? does not yield a global revenue maximum as bidder

1’s bid on � leads to a higher revenue of �p3.

• Clock price p̃?. The additional bids are now su�ciently high so that the e�cient

allocation x? is revenue-maximizing. The auction ends at p̃? at which

B1(x
?
1; p̃

?) + B2(x
?
2; p̃

?) = max
i

Bi(�; p̃
?). (2)

Note that at price p̃? bidder 2 does not yet bid on 1 � �, so (�, 1 � �) is not a

feasible allocation. Revenue is lower than p̃? and lower than p? (Fig. 2b).

4.2 Non-decreasing marginal values

We now consider with non-decreasing marginal values a setting which has received less

attention in the literature than decreasing marginal values.
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h1(p)
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(a) Bidding functions

0 1� � 1
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x? � 1

�p1

�p2

�p3

B1(�; p̃?)
p̃?

p?

x1

B1(x; p) +B2(1� x; p)
max{B1(x; p);B2(1� x; p)}

(b) Revenue of various allocations

Figure 2: CMRA-truthful bidding with decreasing marginal values.
Note: We depict max{B1(x; p), B2(1� x; p)} only if the allocation (x, 1� x) has not received
bids from both bidders.

Proposition 2. Suppose that marginal values are non-decreasing.

(i) Clock-truthful bidding in the CMRA leads to excess supply. The clock ends at clock

price p = mini Ui(�i)/�i. The final auction allocation is ine�cient.

(ii) CMRA-truthful bidding clears the market and leads to the e�cient allocation.

(iii) If �1 = �2, then ex-post revenue under CMRA-truthful bidding is lower than under

clock-truthful bidding; if �1 > �2, then the ex-post revenue comparison is ambiguous.

Proposition 2 reveals the potentially e�ciency-restoring e↵ect of additional bids in

the CMRA. Truthful additional bids lead to market-clearing and an e�cient allocation

while their absence leads to ine�ciencies and excess supply. After providing intuition for

the result, we provide an example that shows that the revenue-ranking can be reversed

with asymmetric caps.

Figure 3 illustrates Proposition 2 for symmetric caps. As before, Figure 3a shows the

headline demands and the additional bids, while Figure 3b shows revenue under di↵erent

allocations.

Once again, let us first consider the outcome of a clock auction or of clock-truthful

bidding in the CMRA. Figure 3a shows that, due to increasing marginal values, bidder i’s

clock-truthful headline demand is � for p  Ui(�)/� and 0 for higher prices. Hence, the

auction ends at clock price p = mini Ui(�)/� = U2(�)/�. As bidder 2 drops demand to 0

at price U2(�)/�, the auction ends with excess supply of 1 � �. Bidder 1 wins quantity

� and the revenue is U2(�).

Under CMRA-truthful bidding, bidders’ headline demands are as under clock-truthful

bidding but they also submit additional bids. For low clock prices, bidders submit few
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(a) Bidding functions
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B1(x; p) +B2(1� x; p)
max{B1(x; p);B2(1� x; p)}

(b) Revenue of various allocations

Figure 3: CMRA-truthful bidding with non-decreasing marginal values
Note: We depict max{B1(x; p), B2(1� x; p)} only if the allocation (x, 1� x) has not received
bids from both bidders.

additional bids, but as the clock price rises, bidders increase their additional bids both

on the intensive and extensive margins.

• Clock price p1. There is no feasible allocation that receives non-negative bids from

both bidders. Hence, the auction continues.

• Clock price p2. There are now feasible allocations that receive non-negative bids

from both bidders. These allocations are not revenue-maximizing as Bi(�; p) = �p

yields higher revenue.

• Clock price p3. Feasible allocations that receive non-negative bids from both bidders

are still not revenue-maximizing. Bidder 1’s marginal values (and additional bids)

are higher and non-decreasing, so allocating more to bidder 1 increases revenue.

• Clock price pf2 . At this price, the weaker bidder 2 places an additional bid of 0 on

1� �. More generally, there is a final price pfi at which bidder i bids 0 on 1� � as

this bidder is indi↵erent between winning � for a payment pfi � and winning 1 � �

for free. The indi↵erence condition Ui(�)� pfi � = Ui(1� �) transforms to

pfi =
Ui(�i)� Ui(1� �j)

�i
. (3)

With bidder 2’s additional bid, it is now possible to accept a bid by each bidder

in the revenue-maximizing allocation (�, 1� �) (Figure 3b). Therefore, the CMRA

ends in market-clearing. The revenue is �pf2 , which is lower than �U2(�)/�.

The following numerical example illustrates that revenue can be higher under CMRA-

truthful bidding and how the CMRA may end with asymmetric caps.
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Example 1 (Higher revenue under CMRA-truthful bidding). Let �1 = 7
8 , �2 = 6

8 ,

U1(�1) = 21, U1(1 � �2) = 1, U2(�2) = 39
2 , and U2(1 � �1) = 1

2 .
11 The allocation

(�1, 1 � �1) is e�cient. Under clock-truthful bidding, the CMRA ends at clock price

mini Ui(�i)/�i = U1(�1)/�1 = 24 < 26 = U2(�2)/�2. Consider CMRA-truthful bidding.

Bidder 1 starts bidding on 1� �2 at clock price pf1 = 160
7 . In contrast to the symmetric-

caps case, the auction does not end at pf1 because (�1, 0) is the revenue-maximizing

allocation at this clock price. The earliest clock price p at which (1 � �2,�2) becomes

revenue-maximizing solves

B1(1� �2; p) + B2(�2; p) = U1(1� �2)� U1(�1) + p�1 + p�2 = p�1.

The solution is p = (U1(�1)� U1(1� �2))/�2 = 80/3. Note, however, that bidder 2 bids

0 on 1 � �1 at clock price pf2 = 76/3 (pf1 < pf2). Hence, the auction ends at clock price

pf2 with the e�cient allocation (�1, 1� �1). Revenue is p
f
2�1 =

133
6 , which is less than the

revenue under clock-truthful bidding: �2U1(�1)/�1 = 18. J

5 Outcomes under strategic bidding

Having characterized the outcomes under non-strategic truthful bidding, we turn to the

strategic incentives in the CMRA. We first show that neither form of truthful bidding is an

equilibrium with decreasing marginal values. When marginal values are non-decreasing,

CMRA-truthful (but not clock-truthful) bidding can be an equilibrium with symmetric

caps. However, this equilibrium is fragile to small asymmetries in the caps. We then

characterize a particularly simple but non-truthful equilibrium. In the next section, we

illustrate how bidders can risklessly collude in the CMRA. The takeaway from these two

sections is that the CMRA does not always provide incentives for truthful bidding and is

instead vulnerable to many forms of strategic manipulation.

Throughout, we use ex-post equilibrium in proxy strategies as our solution concept.

In such an equilibrium, bidders’ strategies are proxy strategies that are best responses

to the opponent’s strategy and any type distribution. In particular, bidders would not

choose an alternative proxy strategy if they knew the opponent’s type.

5.1 No truthtelling with decreasing marginal values

We first examine whether the clock-truthful or CMRA-truthful strategies form equilibria

when bidders have decreasing marginal values. Recall the CMRA’s pricing rule: winning

headline demands are priced at the clock price and winning additional bids are priced

as bid. Such pricing features appear in clock auctions and (sealed-bid) discriminatory

11It is straightforward to check that the utility functions are consistent with Assumption 2. The
di↵erence �1 � (1� �2) = �2 � (1� �1) =

5
8 and U1(�1)� U1(1� �2) = 20 > 19 = U2(�2)� U2(1� �1).
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multi-unit auctions. A common property of equilibria in these auctions is that bidders

have an incentive to “shade” their bids below their value (Ausubel et al., 2014). This

intuition carries over to the CMRA when bidders have decreasing marginal values.

Remark 1. Clock-truthful bidding is not an equilibrium in the CMRA when bidders

have decreasing marginal values just like truthful bidding is not an equilibrium in the clock

auction. As bidders pay px for winning x at final clock price p, they have an incentive

to report a marginally lower willingness-to-pay to end the auction at a lower price as

this saves them money on units they win. Such (marginal) deviations are possible only

if the other bidder uses a downward sloping demand curve as is natural with decreasing

marginal values.

The following proposition states that CMRA-truthful bidding also does not form an

equilibrium in the CMRA when bidders have decreasing marginal values.

Proposition 3. Suppose that marginal values are decreasing. Then there is no ex-post

equilibrium in proxy strategies in which bidder i bids CMRA-truthfully.

The proof of the proposition can be illustrated by what happens at clock price p3 in

Figure 2. At this clock price, the bids are such that the e�cient allocation is a local, but

not global, revenue maximum. Bidders face a threshold problem12 and face two kinds

of deviation incentives captured by Eq. (2). First, bidders have an incentive to free-

ride on their competitor by shading their bids on (what the bidders expect to be the)

e�cient shares even more, i.e., bidding lower than dictated by the truthful additional

bids. In particular, bidders have a greater incentive to decrease the additional bids more

on lower quantities in order to reduce their payments without a↵ecting the allocation

significantly. That is, in Eq. (2), bidder 1 prefers to keep her bid B1(x?
1; p) low and for

bidder 2 to increase B2(x?
2; p). Second, bidders also have an incentive to shade their bids

on high quantities. This allows stronger bidders to remove the threshold problem and

close the auction early. In Eq. (2), a bidder might wish to decrease Bi(�i; p̃?). As a result,

CMRA-truthful bidding is not an equilibrium.

5.2 Fragile truthtelling with non-decreasing marginal values

We now turn to non-decreasing marginal values. Unsurprisingly, clock-truthful bidding

is also not an equilibrium when the bidders have non-decreasing marginal values.

Remark 2. Clock-truthful bidding is not an equilibrium in the CMRA when bidders

have non-decreasing marginal values. Under clock-truthful bidding, bidders first headline-

demand �i and then drop demand to zero. The auction ends as soon as the first bidder

12This is related to what happens in other combinatorial auctions where small bidders need to jointly
outbid a larger competitor. In our case, the bidders may wish to coordinate additional bids on small
quantities in order to outbid their bids on larger quantities.
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does so. Hence, under clock-truthful bidding, weak bidders would expect to win nothing,

therefore submitting a headline demand of 1 � �j at a clock price of 0 is a profitable

deviation.

The weak bidders’ profitable deviation described in Remark 2 might not be necessary

under CMRA-truthful bidding because bidder i anyway submits an additional bid on

1��j and this additional bid can be as low as zero. Recall that bidder i bids 0 on 1��j

at clock price pfi , which is the clock price at which bidder i is indi↵erent between winning

�i for transfer p
f
i �i and winning 1 � �j for free. In the symmetric-caps case, the bidder

with the lower type makes the zero bid on 1 � � first and this bid ends the auction.

This proves to be su�cient for CMRA-truthful bidding to form an equilibrium. With

asymmetric caps, the additional zero-bid does not always end the auction, which distorts

the incentives away from truthful bidding.

Theorem 1. Suppose that marginal values are non-decreasing.

(i) Let �1 = �2. The CMRA has an ex-post equilibrium in proxy strategies in which

bidder i bids CMRA-truthfully.

(ii) Let �1 > �2. CMRA-truthful bidding does not form an ex-post equilibrium.

Focusing on the symmetric-caps case, it may be surprising that CMRA-truthful bid-

ding can ever be an (ex-post) equilibrium: Truthful bidding neither forms an equilibrium

in the pure clock auction nor in the discriminatory auction. Yet, in the CMRA, a combi-

nation of these two auction formats, truthful bidding even forms an ex-post equilibrium.13

However, the existence of this equilibrium is not robust to asymmetries in the bidders’

caps. From a practical perspective, it is worth pointing out that some auctions feature

symmetric caps. However, if �i denotes the bidder’s capacity (see footnote 8), then the

symmetry assumption may be more unlikely to hold.

Why is CMRA-truthful bidding an equilibrium when bidders have non-decreasing

marginal values and symmetric caps? The truthful headline demand is � as long as

the clock price is not prohibitively high. Consider any deviating bid Di(x) for quantity

x. Such a bid must be su�ciently high as it becomes winning only if it is part of a

revenue-maximizing allocation. In particular, the deviating bid Di(x) must satisfy

Di(x) + Bj(1� x; p) � Bj(�; p).

Plugging in the truthful bids of bidder j gives

Di(x) � Uj(�)� Uj(1� x).

13In Appendix B we show that CMRA-truthful bidding also forms an ex-post equilibrium when there
are more than two bidders with non-decreasing marginal values and symmetric caps.

19



Observe that the right-hand side is precisely the VCG price in a VCG auction in which

bidders bid truthfully. In such a VCG auction, the strong bidder i wins � and pays

Uj(�) � Uj(1 � �), and the weak bidder j wins 1 � � and pays Ui(�) � Ui(�) = 0. In

the CMRA with truthful bidding and symmetric caps, bidders’ payments are also exactly

these VCG prices, which implies that bidders cannot profitably deviate.

Asymmetric caps change the auction outcome under CRMA-truthful bidding in a

crucial way: The auction does not necessarily end with the first zero-bid on 1 � �j. In

particular, if the bidder with the higher cap (bidder 1) places the zero-bid on 1��2 first,

the auction does not end as bidder 1’s headline demand is still revenue-maximizing but

does not include bids from both players:

B1(1� �2; p
f
1) + B2(�2; p

f
1) = pf1�2 < pf1�1 = B1(�1; p

f
1).

Hence, the auction continues and drives up prices, which impacts the bidders’ incentives.

If bidder 1 eventually wins 1 � �2, the payment is strictly positive and bidder 1 has an

incentive to end the auction early by deviating to a headline demand of 1 � �2 in the

first round. On the other hand, if the type profile was such that pf1 < pf2 and (�1, 1� �1)

the final allocation, then the auction would end at clock price pf2 under CMRA-truthful

bidding. However, observe that bidder 1 then prefers winning 1��2 for free over winning

�1 for transfer pf2�1:

U1(�1)� �1p
f
2 = U1(�1)�

�1

�2
(U2(�2)� U2(1� �1)) < U1(1� �2) , pf1 < pf2 .

Bidder 1 can win 1 � �2 for free by submitting an additional bid of zero for 1 � �2 at

clock price 0. Note that bidder 1 would pay an inflated VCG price under CMRA-truthful

bidding: �1p
f
2 equals �1/�2 times the VCG price, where the coe�cient �1/�2 > 1 appears

due to the asymmetric caps. These arguments show that CMRA-truthful bidding can

form an equilibrium only if pf2  pf1 for all type profiles; in this case, the auction certainly

ends at pf2 with bidder 2 making the zero-bid. Next, we show that this necessary condition

is not su�cient.

CMRA-truthful bidding is not bidder 1’s best response to bidder 2’s CMRA-truthful

strategy if pf2 < pf1 for all type profiles. In particular, bidder 1 can lower the payment

for �1 from pf2�1 to p�1, where p < pf2 . In the proof, we also provide a lower bound on

p to make the deviation feasible. The lower payment can be guaranteed by headline-

demanding �1 until clock price p, not making any additional bids, and dropping demand

to 0 at clock price p. This freezes the price bidder 1 has to pay for �1 to p�1. Due to the

cap asymmetry and pf2 < pf1 , the auction does not end at p but continues until bidder 2

places the zero-bid on 1 � �1 at clock price pf2 . As bidder 1 can secure �1 for a lower

payment, CMRA-truthful bidding does not form an equilibrium.
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5.3 A non-truthtelling equilibrium for any marginal values

We now describe a bidding strategy which turns out to be an ex-post equilibrium ir-

respective of what the bidders’ marginal values are. In the symmetric-caps case, the

bidders submit a headline demand of � for as long as it gives them non-negative surplus.

There are no additional bids except for a single additional bid of 0 on 1�� at clock price

pfi (at which bidder i is indi↵erent between winning � and winning 1 � � for free). As

such, the strategy is “almost clock-truthful” when marginal values are non-decreasing.

We refer to this strategy as the constant bidding strategy. Given that both players play

this strategy, the stronger bidder i wins � at a linear price of pfj and the weaker bidder j

wins 1�� for free. With non-decreasing marginal values, the auction outcome is as under

CMRA-truthful bidding, including the VCG prices. However, we know from Theorem 1

that bidders have incentives to deviate from this outcome when the caps are asymmetric.

For incentive compatibility in the asymmetric-caps case, the price at which the addi-

tional zero-bid is made must only be determined by bidders’ types rather than also by

their caps. This is achieved by bidders’ bidding on �2 = min{�1,�2} as their headline

demand. To this end, define pf (✓) = (U(�2; ✓)� U(1� �2; ✓))/�2. To state the strategy

in a unified way, let �2 stand for � in the symmetric-caps case. In the constant strategy,

bidder i’s headline demand is

hi(p) =

8
<

:
�2 for p  Ui(�2)

�2

0 otherwise;
(4)

bidder i places a single additional bid of Ai(1� �2; pf (✓i)) = 0.

Theorem 2. Suppose that both bidders either have decreasing or non-decreasing marginal

values.

(i) Let �1 = �2. The CMRA has an ex-post equilibrium in proxy strategies in which

bidder i plays the constant strategy.

(ii) Let �1 > �2. The CMRA has an ex-post equilibrium in proxy strategies in which

bidder i plays the constant strategy if and only if ✓1 and ✓2 are such that

U(�1; ✓1)  U(�2; ✓1) + U(1� �2; ✓2). (�)

If the marginal values are decreasing, the final allocation is generically ine�cient. If

the marginal values are non-decreasing, (a) the outcome is ine�cient if (�1, 1 � �1) is

e�cient; (b) the outcome is e�cient if (1� �2,�2) is e�cient; and (c) the outcome is as

under CMRA-truthful bidding if the caps are symmetric.

To confirm that the constant bidding strategy is a best response to itself, let ✓i � ✓j.

Then bidder i knows that she wins �2 for a price of pf (✓j). She cannot win �2 at a lower
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price. Winning �2 at pf (✓j) is better than winning 1 � �2 for free by construction of pf

and pf (✓j)  pf (✓i). She could win less than 1 � �2, but this is not profitable. With

asymmetric caps, bidder 1 may want to win �1 with the same deviation strategy as the

one that proves that CMRA-truthful bidding does not form an equilibrium. Then the

auction does not end at pf (✓2), but at bidder 2’s drop-out price p = U2(�2)/�2.14 Bidder

1’s deviating bid (and therefore payment) must be at least U2(�2) so that the deviation

leads to a revenue-maximizing allocation. The deviation is then profitable only if

U1(�1)� U2(�2)| {z }
deviation payo↵

� U1(�2)� U2(�2) + U2(1� �2)| {z }
payo↵ from the constant strategy

.

Condition (�) implies that winning �1 is not profitable. Now, if ✓i  ✓j, then bidder i

knows she wins 1��2 for free. She cannot win 1��2 at a lower price. She does not want

to win more as this would be more expensive and therefore not profitable by construction

of pf .

Note that condition (�) constrains only the highest type of bidder 1 and the lowest

type of bidder 2; the equilibrium exists if the bidder with the higher cap cannot also

have a much higher type than the low-cap bidder. Bidder 2 can have arbitrarily high

types because bidder 2’s cap eliminates the potential deviation of winning more than �2.

Observe that condition (�) can be satisfied for su�ciently similar caps for any given ✓1

and ✓2. The following examples illustrate the characterization in Theorem 2(ii).

Example 2 (Quadratic utility). Let �1 > �2, the utility function be quadratic, ui(x) =

✓i � x, and increasing, i.e., min{✓1, ✓2} � 1. Let u(�2; ✓1) = ✓1 � �2 < ✓2 � 1 + �2 =

u(1��2; ✓2), which is a stronger version of Assumption 1; it implies that bidder 1 winning

more than �2 is never e�cient. This assumption guarantees that the constant strategy

forms an ex-post equilibrium. Plugging the quadratic utility functions into condition (�)

leads to

✓1 
✓2(1� �2) +

1
2�

2
1 � 1

2 + �2 � �2
2

�1 � �2
.

The assumption that the e�cient share is not too large also places an upper bound on

bidder 1’s types: ✓1 < ✓2�1+2�2. Whenever this upper bound is satisfied, condition (�)

also holds as

✓1 < ✓2 � 1 + 2�2 
✓2(1� �2) +

1
2�

2
1 � 1

2 + �2 � �2
2

�1 � �2
.

To see that the latter inequality holds, multiplying by the denominator and collecting

14There is a version of the constant strategy that is always an ex-post equilibrium. It involves bidder
2 to “overbid” as a threat to deter bidder 1 seeking to win �1. In this strategy, bidder 2 keeps the
headline demand at �2 until the clock price reaches p0 = U(�1; ✓1)/�2. Bidder 1 then needs to bid at
least p0�2 = U(�1; ✓1) to win �1. Note that bidder 2’s threat may not be credible, however, as it may
involve bids above the willingness-to-pay. A practical implication is that bidders with tighter caps might
want to signal “strength” disproportionately more.
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the terms leads to

0  (1� �1)

✓
✓2 �

1

2
(1� �1)

◆
+ (�1 � �2)

2.

The right-hand side is true because ✓2 � 1 and 0 < �1 < 1. J

Example 3 (Linear utility). Let �1 > �2 and the utility function be linear in x, i.e.,

ui(x) = ✓i. Condition (�) reduces to

✓1  ✓2
1� �2

�1 � �2
.

If �1 = 0.7 and �2 = 0.6, the highest type of bidder 1 can be up to four times the lowest

type of bidder 2 for the constant bidding equilibrium to be sustained. As the caps tend

to be as asymmetric as possible (�1 ! 1 and �2 ! 1/2), the equilibrium exists only if

bidder 1’s highest type is at most (marginally above) bidder 2’s lowest type. J

The constant strategy features “demand expansion” when the bidders have decreasing

marginal values.15 This may be surprising because one typically associates clock auction

and pay-as-bid auction formats with demand reduction rather than demand expansion.

Here, the demand expansion leads to an ine�cient allocation in which the strong bidder

may win an even greater quantity than in the e�cient allocation. If there is such bidder

asymmetry in the market, one option for the auction designer would be to introduce caps

that are tighter on the stronger bidder than on the weaker one. With non-decreasing

marginal values, bidder 1 reduces demand compared to truthful bidding while bidder 2

bids “almost clock-truthfully.”16

The constant strategy also provides an opportunity to raise rivals’ costs despite the

presence of pay-as-bid pricing in the CMRA.17 Suppose bidder i knows that the other

bidder is stronger and bids according to the constant strategy. A best response for bidder

i is to demand 1 � �2 at clock price 0. However, following the constant strategy leads

to a higher price for bidder j. In particular, bidder i with a lexicographic preference for

raising bidder j’s payment will follow the constant strategy; extending the clock beyond

pf (✓i) leads to the risk of winning �2 at clock price pf (✓j).

15Bidder 1 always reduces demand relative to truthful headline demands for low clock prices.
16The bidding behavior of bidders with decreasing marginal values can be interpreted as them bidding

clock-truthfully under non-decreasing marginal values. Janssen and Kasberger (2019) describe an equi-
librium in the CCA in which bidders with decreasing marginal values also act as if their marginal values
are non-decreasing (jumps in the demand function).

17It is well-known that VCG pricing can provide ample opportunities to raise rival’s cost in the CCA
(Janssen and Karamychev, 2016; Levin and Skrzypacz, 2016; Janssen and Kasberger, 2019).

23



6 Collusion via risk-free demand reduction

We now discuss how additional bids can be used to collude via demand reduction in the

CMRA. In many dynamic auctions, bidders have incentives to (tacitly) coordinate on low

demands in early rounds to close the auction at low prices. However, in a clock auction or

a CCA, if a bidder reduces demand, the activity rule (monotonicity constraint) requires

demand to stay low. Therefore, (unilateral) demand reduction can be a risky strategy.

In contrast, the CMRA’s additional bids can be on small quantities while the headline

demand is high. In particular, at low clock prices, bidders can use additional bids on

small quantities to find a revenue-maximizing allocation at which a bid from each bidder

is accepted. Demand reduction using additional bids is therefore risk-free in the sense

that the bidder does not lose the ability to demand large quantities at higher clock prices

if the coordination at low clock prices is unsuccessful.18

Concretely, we propose the following collusive strategy in the CMRA. Bidders follow

the constant strategy as in Theorem 2 but augment it by a single additional bid of 0

for quantity 1/2 in the initial clock round. If both bidders bid this way, the revenue-

maximizing allocation immediately assigns half of the supply to each bidder and the

revenue is 0. Note that as the headline demand is �2, the bidder can later still demand

large quantities if the auction does not end in the first round. This makes the demand re-

duction strategy risk-free for bidders. We call this modified strategy the risk-free demand

reduction (RDR) strategy. Formally, the headline demand of the RDR strategy is as in

Equation (4) and there are two additional bids: Ai(1/2; 0) = 0 and Ai(1��2; pf (✓i)) = 0.

The next theorem shows that both bidders following the risk-free demand reduction

strategy is an ex-post equilibrium in proxy strategies if the bidders are su�ciently similar

to each other.19 The existence of this equilibrium relies on a focal allocation that splits

the market and is acceptable to every bidder.20

Theorem 3. Suppose that both bidders have either decreasing or non-decreasing marginal

values.

(i) Let �1 = �2. The CMRA has an ex-post equilibrium in proxy strategies in which

bidder i chooses the risk-free demand reduction strategy if and only if

U(�2; ✓i)� U(1/2; ✓i)  U(�2; ✓j)� U(1� �2; ✓j) (|)

holds for i = 1, 2 and j = 3� i.

18Note that a dominant strategy is truely ‘risk-free.’ In contrast, our definition of risk-free is not about
payo↵s, but about the ability to demand large quantities following an unsuccessful attempt to end the
auction at low clock prices.

19The risk-free demand reduction strategies form a Bayes-Nash equilibrium if the other bidder is
su�ciently strong in expectation.

20In our model, (1/2, 1/2) is such a focal split. In practice, there might be no such focal allocation or
indeed many of them (so bidders would need to use multiple additional bids to reach one).
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(ii) Let �1 > �2. The CMRA has an ex-post equilibrium in proxy strategies in which

bidder i chooses the risk-free demand reduction strategy if conditions (�) and (|)

hold.

Using the constant strategy as the continuation limits the potentially profitable devi-

ations. Since the constant strategy profile forms an ex-post (continuation) equilibrium,

we essentially only have to check incentive compatibility at clock price 0. In particular,

to prove that the additional bid on 1/2 at clock price 0 is incentive compatible, it is

su�cient to ask whether a bidder prefers winning 1/2 for free over the outcome when

both follow the constant strategy. In the latter case, the stronger bidder i wins �2 for

transfer pf (✓j)�2 and the weaker bidder j wins 1��2 < 1/2 for free. Hence, it is apparent

that the weaker bidder has no incentive to deviate from the RDR strategy. The stronger

bidder also prefers the RDR strategy as

Ui(1/2) > Ui(�2)� pf (✓j)�2 = Ui(�2)� �2
Uj(�2)� Uj(1� �2)

�2
,

which is implied by Condition (|). In the symmetric-caps case, the continuation strate-

gies always form an ex-post equilibrium. However, in the asymmetric-caps case, bidder

1 may want to win �1 instead of 1/2 for free. To make such a deviation unprofitable, we

also impose condition (�).

Condition (|) holds when the types are su�ciently close to each other.21 The following

examples illustrate when the RDR equilibrium exists.

Example 4 (Quadratic utility). Let u(x; ✓) = ✓� x. For simplicity, we consider ex-ante

symmetric bidders with �1 = �2 = � and ✓1 = ✓2 = ✓ and ✓1 = ✓2 = ✓. We show that for

✓ > 1.25, whenever Assumption 1 is satisfied, so is condition (|). Under the symmetry

assumptions, Assumption 1 reduces to ✓ < ✓ � 1 + 2�. Condition (|) reduces to

1

2
✓(2�� 1) +

1

8
 ✓(2�� 1) +

(1� �)2

2
.

Rewriting, we obtain ✓  2✓ � 3
4 +

�
2 . Assumption 1 implies condition (|) if

✓  ✓ � 1 + 2�  2✓ � 3

4
+

�

2
.

The latter inequality reduces to�1/4+3�/2  ✓. The inequality holds for all � if ✓ > 1.25.

Example 5 (Linear utility). Let U(x; ✓) = ✓x. Condition (|) boils down to ✓j(2�2�1) �
✓i(2�2 � 1)/2 and holds as long as a bidder’s strongest type is at most twice the weakest

type of the other bidder.
21The RDR strategy can be modified to accommodate more than two bidders: Bidders submit addi-

tional bid Ai(1/n; 0) = 0 at a clock price of 0 and choose a suitable continuation strategy. Provided that
bidders are su�ciently similar, the strategy profile will form an ex-post equilibrium.
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6.1 An alternative activity rule to mitigate collusion

We now take a closer look at which part of the auction rules make the demand reduction

strategy risk-free and how the rules might be modified to make collusion riskier. Me-

chanically, the demand reduction in the CMRA works through the additional bids. But

it is the activity rule that makes collusion risk-free. Recall that in the RDR strategy the

bidder expresses zero marginal value between 1/2 and � in the initial clock round. If

the auction does not end at p = 0, the bidder raises the bid on � (through the headline

demand the bid on � is p�) while keeping the additional bid on 1/2 constant at 0. Note

that the CMRA uses an activity rule in which only headline demands place constraints on

the bidding function and only for quantities between two headline demands. But activity

rules are often introduced to ensure consistent bidding along the auction price path, usu-

ally in the sense of revealed preferences (Ausubel and Baranov, 2014, 2020). However,

the activity rule used in the CMRA does not transform additional bids into constraints

on the bid function; as a result, observed bids can violate revealed preference.22

We therefore propose the following alternative activity rule that also transforms the

additional bids into constraints.23 Assuming a finite number of bids, let X(p) denote

the set of all quantities bidder i submits non-negative bids on at clock price p: X(p) =

{x : Bi(x; p) � 0}. Consider any adjacent x, x0 2 X(p) with x < x0,24 and denote

Bi(x0; p) � Bi(x; p) = z. If z � 0 and y 2 (x, x0], then for all p0 � p the alternative

activity rule requires that

Bi(y; p
0)  Bi(x; p

0) + z
y � x

x0 � x
.

The alternative activity rule strictly strengthens the activity rule used in the real-world

implementations of the CMRA (described in Section 3 and used throughout our analysis).

To see this, suppose that bidder i reduces his headline demand from x0 to x at clock price

p. Then the bidding function is such that Bi(x0; p)�Bi(x; p) = p(x0�x) = z. The relative

cap (with respect to the headline demands) implies Bi(y; p0)  Bi(x; p0)+z(y�x)/(x0�x)

for x < y < x0.

E↵ect on risk-free demand reduction. The alternative activity rule renders the

RDR strategy infeasible. Suppose behavior in the first clock round is as according to

the RDR strategy: headline-demand � at clock price p = 0 and submit additional bid

22To see this, note that at p = 0, the bidder bids B(1/2; 0) = 0 and B(�; 0) = 0. Hence, the bidder is
indi↵erent between 1/2 and �: U(1/2) = U(�). At p > 0, the utility-maximizing quantity cannot be �
because U(�)� p� < U(1/2)� p/2 and � > 1/2.

23Our alternative activity rule is deliberately straightforward and we propose it to show clearly how
it a↵ects the equilibria we discuss. It is an interesting research direction to consider whether weaker
activity rules, such as the GARP activity rule, would also have good properties in our context (Ausubel
and Baranov, 2014, 2020).

24That is, for any x00 2 (x, x0) ) x00 6= X(p).
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A(1/2; 0). Hence, the only two quantities that receive non-negative bids are 1/2 and �

and B(�; 0) � B(1/2; 0) = 0. The alternative activity rule then specifies that for p > 0

and y > 1/2 the bidding function must satisfy B(y; p)  B(1/2; p). This constraint

conflicts with the RDR strategy, which features B(�; p) = p� > B(1/2; p) = 0 for p

slightly larger than 0. Moreover, after the initial round behavior of the RDR strategy,

the alternative activity rule rules out headline demands above 1/2 at p > 0. To see this,

suppose the bidder headline-demands x > 1/2. Then the alternative activity rule requires

B(x; p) = px  B(1/2; p). The auction rules also require B(1/2; p)  p/2, which leads to

a contradiction.

E↵ect on other collusive strategies. The alternative activity rule does not, of course,

rule out all collusive strategies. In particular, the bidders may attempt to collude in

headline demands alone—this is similar to the sort of collusion that is familiar from

standard clock auctions (Brusco and Lopomo, 2002; Grimm et al., 2003). However, such

collusion is risky because if the headline demand is reduced and the auction does not end,

then the bidder is constrained to bidding on lower quantities for the rest of the auction.

E↵ect on truthful bidding. The activity rule does not rule out truthful bidding. At

low prices, a truthful bidder submits a bid for the maximum desired quantity so the

activity rule—which aims to prevent a bidder from submitting low initial bids—has no

bite. Moreover, note that CMRA-truthful bidding continuously increases the interval of

quantities that receives non-negative bids. For any interval [a,�i] such that B(a; p) � 0,

the marginal bids on [a,�i] do not change for p0 > p. Let us revisit the example in

Section 2. Each bidder headline-demands 3 units and submits an additional bid of 0 on

2 units at clock price of 10. The corresponding bids are B(3; 10) = 30 and B(2; 10) = 0,

which leads to the constraint B(3; p)  B(2; p) + 30 for p > 10. Note, however, that the

additional bid for two units is always B(2; p) = 3p � 30 = B(3; p) � 30. Clock-truthful

bidding is also not a↵ected by the alternative activity rule.

E↵ect on the constant strategy. The alternative activity rule requires the constant

strategy to be modified for p > pfi .One natural modification is to maintain the indi↵erence

between the headline demand � and 1 � � by increasing the additional bid on 1 � � to

Bi(1��; p) = Ui(1��)�Ui(�)+p�. We now show that the modified strategy is feasible.

The activity rules requires

Bi(�; p)  B(1� �; p) + pfi �.

Plugging in Bi(�; p) = p� and the (truthful) bid for 1 � � reduces the rule to pfi  pfi .

Hence, the profile of constant strategies can be modified to form an ex-post equilibrium

27



Additional bids in bidding data
W

in
n
in
g
b
id
s Few early, more later Many early None or few

Headline only NA NA Clock-truthful
Headline/additional CMRA-truthful (non-dec.) NA Constant bidding
Additional only CMRA-truthful (dec.) RDR NA

Figure 4: Predicted bidding patterns under di↵erent bidding strategies and marginal
valuations.
Note: “NA” are bidding patterns that cannot be explained by our results. RDR stands for
risk-free demand reduction.

under the alternative activity rule.

While the alternative activity rule can mitigate collusion without a substantive impact

on other equilibrium strategies, it might a↵ect bidding in ways that our model does not

take into account. In particular, bidders need to anticipate the e↵ect of the extra bidding

constraints on the ability to submit bids later in the auction and therefore to keep track

of (potentially) many bundles as prices evolve. As a result, bidders might be more likely

to “miss” bids and find it more di�cult to manage their budgets.

7 What theory predicts about bidding in practice

In the previous sections, we have identified four patterns of bidding: clock-truthful,

CMRA-truthful, the constant strategy, and risk-free demand reduction. Some of these

form equilibria, others do not. In equilibrium there can be demand expansion, demand

reduction, and (CMRA-) truthful bidding. We now discuss how theory and auction data

can be combined to learn something about bidding behavior.

Figure 4 summarizes which bidding patterns can be explained by the strategies we

have described and suggests which bidding patterns in the CMRA would require new

theoretical results. While the bidding strategies are inspired by our equilibrium analysis

in Sections 5 and 6, our predictions do not rely on equilibrium bidding.

In our model, each bidding pattern we have analyzed has di↵erent implications for how

the auction ends. If only headline demands are winning, the pattern of bidding is consis-

tent with clock-truthful bidding (or with other clock auction behavior such as standard

demand reduction) and we can rule out CMRA-truthful bidding, constant bidding and

the risk-free demand reduction strategy. If a mix of headline and additional bids is win-

ning, the pattern of bidding is consistent with CMRA-truthful bids and constant bidding

and we can rule out clock-truthful bidding and the risk-free demand reduction strategy.

Finally, if only additional bids are winning, the pattern is consistent with the risk-free

demand reduction strategy and CMRA-truthful bidding under decreasing marginal val-

ues, but we can rule out CMRA-truthful bidding in the case of non-decreasing marginal

values, as well as clock-truthful bidding and constant bidding. Of course, we cannot
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distinguish between CMRA-truthful bidding under non-decreasing marginal values and

constant bidding from winning data only because they are outcome equivalent.

Under CMRA-truthful bidding, a bidder starts with none or few additional bids. In

the course of the auction, they not only add new additional bids but also raise existing

additional bids. Under the risk-free demand reduction strategy, a bidder starts with a

headline demand of a large quantity and additional bids for smaller quantities.25 This

cannot happen under truthful bidding because a bidder cannot be indi↵erent between

a large and small quantity of spectrum at equally low prices. Under risk-free demand

reduction, we therefore expect high variance in the bid quantities in early rounds and for

the auction to end quickly. Under the constant bidding strategy, the headline demand is

constant and additional bids only come late in the auction. The additional bid in this

case is low but is made at a relatively high clock price.

While the ideal test of bidding behavior would examine actual bidding data, most

telecom regulators are reluctant to publish bidding data in spectrum auctions because

it can contain highly sensitive commercial information. Therefore, published auction

data is often quite restrictive and do not allow us to unambiguously identify bidding

strategies. In the next section we examine Danish CMRAs for which the DEA only

publishes aggregated payments and allocations for each bidder. As we will show, despite

the coarse data, our theoretical predictions can still be used to assess whether observed

outcomes are consistent with the described patterns.

8 The CMRA in Danish spectrum auctions

We now discuss the outcomes of three Danish spectrum auctions that used the CMRA.26

In each auction there were three bidders whom we refer to as A, B, and C. Each auction

allocated lots with and without a coverage obligation. The structure of the auction was

such that first the lots with a coverage obligation were allocated (at reserve prices),

and then a CMRA was used for the remaining lots. The CMRA first allocated band-

specific generic lots. A subsequent assignment phase allocated the specific frequencies.

All auctions featured symmetric spectrum caps.

The outcomes changed as bidders became more acquainted with the auction format.

In the first auction, it appears that bidders did not use additional bids to end the auction.

In the second auction, one bidder basically won the spectrum cap and there is evidence

25In our model, bidders only submit one additional bid in the risk-free collusive strategy, but in practice
with many lots across many bands, it might make sense to submit a number of additional bids which
would reflect salient ways of splitting the market. Indeed, bidders have many opportunities to coordinate
on a collusive market split at clock prices higher than the reserve.

26We do not consider the 2020 Norwegian spectrum CMRA. As this auction allocated licenses in an
unusually large number of di↵erent frequency bands, it is probable that the main task of the auction was
achieving coordination among the bidders rather than creating competition for scarce licenses. Excess
supply in the auction is evidence for this.
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that additional bids were winning. A bidder may have ended the auction with a low

additional bid that was made on a small package. In our theoretical framework, this

would amount to the constant strategy or to CMRA-truthful bidding with non-decreasing

marginal values. In the third auction, there is again evidence that additional bids were

winning. The prevalence of additional bids in later auctions suggests that bidders might

have become more familiar with the auction format over time.

8.1 Denmark’s 1800 MHz spectrum auction

In 2016, the DEA sold licenses in the 1800 MHz band. The bidders were bidding for 2x65

MHz paired frequencies in the 1800 MHz frequency band. The auction first allocated

three 2x10 MHz blocks with a coverage obligation non-competitively: Each bidder won

a 2x10 MHz block at the reserve price of DKK 50 million.27 The remaining 2x35 MHz

were sold in a CMRA. After assigning the blocks with the coverage obligation, there were

spectrum caps that allowed each bidder to win at most 2x20 MHz in the CMRA (which

corresponds to a � of 0.57).

The CMRA allocated seven lots (2x5 MHz blocks). Each bidder was allowed to win

at most four blocks in the CMRA. The reserve price was DKK 25 million. The CMRA

allocated generic blocks; specific frequencies were allocated in an assignment stage after

the CMRA. The assignment stage used a VCG auction.

Bidder A won 2x20 MHz for a total price of DKK 300,159,486. Bidder B won 2x20

MHz for a total price of DKK 300,159,486. Bidder C won 2x25 MHz for a total of DKK

425,239,229. Each bidder won 2x10 MHz with the coverage obligation, so bidders A and

B both won two lots in the CMRA. Bidder C won three lots in the CMRA.

It is likely that only headline demands were winning. The first evidence is that bidders

A and B paid exactly the same amounts. Moreover, after subtracting the reserve price

for the 2x10 MHz with the coverage obligation, the payment per lot in the CMRA was

exactly DKK 125,079,743 for each bidder. We view this as evidence that the final clock

price was DKK 125,079,743. It also suggests that the VCG prices in the assignment stage

were 0.

The CMRA ending with headline demand only is only consistent with clock-truthful

bidding. While it is probable that bidders did not submit truthful headline demands but

reduced their headline demands, there is no evidence that they used additional bids to

end the auction as they would in CMRA-truthful bidding, in the constant strategy, or in

risk-free demand reduction.
27On 30 September 2016, DKK 1 = $0.15.
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8.2 Denmark’s 700 MHz, 900 MHz and 2300 MHz auction

In early 2019, the DEA auctioned licenses for frequencies in the 700 MHz, 900 MHz, and

2.3 GHz bands. The DEA used the CMRA to sell 16 blocks across two bands. Revenue

was almost DKK 2.2 billion. A 40 MHz block in the 2.3 GHz band was unsold. We

believe that it did not sell due to an associated coverage obligation.

There was a large di↵erence in bidders’ payments. In Online Appendix OA.1, we

argue it is plausible that bidder B won their headline demand, bidder C won with an

additional bid, and bidder A either won their headline demand or with an additional bid.

Bidder B won the maximum quantity allowed by the spectrum cap (excluding the unsold

lot with the coverage obligation that received no bids), which is consistent in our model

with CMRA-truthful bidding under non-decreasing marginal values or with the constant

strategy. Bidder C won a small quantity at a relatively low price, which is also consistent

with these two strategies.

8.3 Denmark’s 2021 auction

In 2021, the DEA allocated frequencies in the 1.5 GHz, 2.1 GHz, 2.3 GHz, 3.5 GHz and

26 GHz bands. Again, the DEA first auctioned o↵ blocks with coverage obligations and

then used the CMRA to sell the rest. The DEA used the CMRA to auction a total of

39 blocks across all the five bands. There were three bidders and revenue was just above

DKK 2 billion. The auction ended with no lots unsold. If all lots had sold at reserve

price, revenue would have been DKK 865 million. In Online Appendix OA.2, we argue

that at least some additional bids were winning as linear closing prices seem unlikely.

Again, this suggests that bidders were not simply using headline demands.

9 Conclusion

In this paper, we provided the first theoretical analysis of the CMRA, an auction format

that has been used in several European spectrum sales. Our analysis of strategic bid-

ding suggests that truthtelling equilibria are vulnerable to bidder asymmetries and that

ine�cient equilibria might emerge. Crucially, however, the CMRA is prone to risk-free

collusive bidding when bidders are su�ciently symmetric. This paper therefore under-

lines the importance of rigorous theoretical analysis of auction formats in the process of

auction design.

There are several avenues for further work. First, one could develop the theoretical

analysis by looking at other equilibria in our model or by extending the model to het-

erogeneous goods. Second, one could take our theoretical predictions to real-world or

experimental bidding data.28 Third, one could analyze bidder incentives under richer

28Some combinatorial auctions have been studied in laboratory experiments (e.g., Kagel et al., 2010,
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utility functions that include, for example, spitefulness or risk aversion. Finally, one

could explore other alternative activity rules and the associated trade-o↵s in this auction

format.

A Omitted Proofs

A.1 Proofs of Section 4

Proof of Proposition 1. We prove each of the three statements separately.

1. The truthful headline demands are continuous and decreasing in p. Thus, the

auction ends e�ciently and with market clearing at price p?.

2. We first show that CMRA-truthful bidding cannot end in an ine�cient allocation.

Let x be an ine�cient allocation in which bidder i wins, wlog, less than in the

e�cient allocation (xi < x?
i ). The allocation x can only be revenue-maximizing if

both bidders have bid on their shares. Then bidder i’s marginal bid is higher than

bidder j’s marginal bid. Thus it is profitable to allocate more to bidder i.

In any round p, the revenue-maximizing allocation is either the e�cient allocation

or a boundary allocation ((�i, 0) for low prices or (�i, 1� �i) for high prices). Note

that 1 � �j < x?
i . Hence, there are prices p for which bidder i bids on x?

i but not

on 1� �j. For prices p for which at least one bidder bids on 1� �i, we have

Bi(x
?
i ; p) + Bj(x

?
j ; p) = Ui(x

?
i )� Vi(p) + Uj(x

?
j)� Vj(p) > Bi(�i; p) + Bj(1� �i; p).

It follows that (�i, 1 � �i) cannot be the final allocation; the auction ends before

one bidder i bids on 1� �j. The CMRA then ends at the lowest price p̃? such that

Bi(x
?
i ; p̃

?) + Bj(x
?
j ; p̃

?) = max
i=1,2

Bi(�i; p̃
?);

the auction ends as soon as the interior (e�cient) revenue-maximizing allocation is

a global maximum of revenue. We have p̃? < p? as

Bi(x
?
i ; p

?) + Bj(x
?
j ; p

?) = p? > p?�i > Bi(�i; p
?) = Ui(�i)� Ui(x

?
i ) + p?x?

i

due to decreasing marginal values (bids) and truthful headline demands. The in-

equality implies that at p?, the unique revenue-maximizing allocation is the e�cient

allocation, so the auction must have ended at a lower price.

2014; Bichler et al., 2013).
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3. We now show that revenue is lower. Recall that the CMRA ends at p̃? < p?. Bidder

i’s contribution to revenue is

Bi(x
?; p̃?) = Ui(x

?)� Vi(p̃
?)  x?p̃? < x?p?.

The first inequality is true as x? is not the utility-maximizing demand at p̃?.

Proof of Proposition 2. We prove each of the three statements separately.

1. The clock-truthful demand is �i until the price reaches Ui(�i)/�i. For higher prices

demand equals 0. Hence, the clock ends at price minUi(�i)/�i and it does so with

excess supply. Due to positive marginal values for all shares below �i, the e�cient

allocation does not feature excess supply. The outcome is ine�cient.

2. Consider CMRA-truthful bidding. For p  Ui(�i)/�i, truthful additional bids are

Bi(x; p) = Ui(x) � Vi(p), where Vi(p) = Ui(�i) � p�i. At price pfi bidder i is

indi↵erent between winning �i for a payment �ip
f
i and winning 1��i for free. This

leads to

pfi =
Ui(�i)� Ui(1� �j)

�i
.

Hence, the auction may end at clock price min{pf1 , p
f
2} with market clearing. Note,

however, that if pf1 < pf2 and �1 > �2, then the allocation (1��2,�2) is not revenue-

maximizing at clock price pf1 despite receiving non-negative bids from both bidders;

this is because �1p
f
1 > �2p

f
1 + 0. In the following three exhaustive cases, we show

that the auction ends nevertheless with the e�cient allocation.

Case 1 (pf2  pf1). The CMRA ends at clock-price pf2 with the allocation (�1, 1 �
�1) as this allocation receives bids from both bidders and is revenue-maximizing.

Suppose the outcome were ine�cient, i.e., U1(1��2)+U2(�2) > U1(�1)+U2(1��1).

Then we observe that

pf2 =
U2(�2)� U2(1� �1)

�2
>

U1(�1)� U1(1� �2)

�2
� U1(�1)� U1(1� �2)

�1
= pf1 ,

which is a contradiction to pf2  pf1 .

Case 2 (pf1 < pf2 and (�1, 1� �1) is e�cient). Bidder 1 bids zero on 1� �2 at clock

price pf1 so the allocation (1��2,�2) receives bids from both players. The allocation

is not revenue-maximizing, however, if �1 > �2. In this case, the CMRA continues.

The price at which the auction may end with allocation (1� �2,�2) is such that

U1(1� �2)� U1(�1) + p�1 + p�2 = p�1.
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The price that solves the equality is

p =
U1(�1)� U1(1� �2)

�2
,

which is larger than pf1 . Moreover, as (�1, 1 � �1) is e�cient, this price is larger

than pf2 . Consequently, bidder 2 bids 0 on 1� �1 before the joint bid on allocation

(1� �2,�2) exceeds p�1. The auction ends at pf2 with the e�cient allocation.

Case 3 (pf1 < pf2 and (1� �2,�2) is e�cient). As (1� �2,�2) is e�cient, the prices

satisfy

pf1 =
U1(�1)� U1(1� �2)

�1
<

U1(�1)� U1(1� �2)

�2
<

U2(�2)� U2(1� �1)

�2
= pf2 .

At pf1 , the e�cient allocation receives bids from both bidders; however, the joint

bid on it is not revenue-maximizing for prices slightly above pf1 . This changes at

p = U1(�1)�U1(1��2)
�2

. The auction does not end earlier with allocation (�1, 1� �1) as

bidder 2 does not bid on 1� �1.

3. Let �1 = �2 = �. Under clock-truthful bidding, the clock ends at clock price

mini Ui(�)/�. Under CMRA-truthful bidding the auction ends at a lower clock

price, namely mini p
f
i . As ex-post revenue is � times the final clock price in both

cases, revenue is lower under CMRA-truthful bidding due to the lower final clock

price.

A.2 Proofs of Section 5

Proof of Proposition 3. Suppose both bidders bid CMRA-truthfully. The auction ends

at price p̃? such that

B1(x
?
1; p̃

?) + B2(x
?
2; p̃

?) = max
i

Bi(�i; p̃
?).

The bidder with the higher bid on �i has an incentive to stop raising bids on quantities

that can no longer be e�cient shares.

Proof of Theorem 1. Let �1 = �2 = �. Suppose bidder j bids CMRA-truthfully. If bidder

i also bids in such a way and ✓i � ✓j, then the auction ends with bidder i winning � for

a payment pfj�. If ✓i < ✓j, then bidder i wins 1� � for free. In the first case the surplus

is Ui(�)� Uj(�) + Uj(1� �). In the second case the surplus is Ui(1� �).
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Suppose bidder i wants to win x for payment Di(x). As bidder j’s headline demand

is �, bidder i’s bid Di(x) at price p is winning only if

Di(x) + Bj(1� x; p) � Bj(�; p).

Ideally, this inequality is binding as otherwise the bid Di(x) can be decreased. Plugging

in the expressions for bidder j’s bids yields

Di(x) = Uj(�)� Uj(1� x).

Consider ✓i � ✓j. The deviation is profitable only if the surplus from winning x is

better than winning �, i.e.,

Ui(x)�Di(x) � Ui(�)� pfj�.

Plugging in the expression for Di(x) gives

Ui(x)� Uj(�) + Uj(1� x) � Ui(�)� Uj(�) + Uj(1� �).

Note that this is a (weak) contradiction as it is e�cient that bidder i wins � (strict if

x 6= �). We conclude that bidder i does not have an incentive to deviate.

Now consider ✓i < ✓j. The deviation is profitable if

Ui(x)� Uj(�) + Uj(1� x) � Ui(1� �),

where the left-hand side is the expected utility of winning x for a payment Di(x) and

the right-hand side is the expected utility from following the CMRA-truthful strategy.

The only x for which the inequality holds is x = 1� � as bidder j winning � is e�cient.

Hence, there is no profitable deviation.

Let the caps be asymmetric. We first prove two lemmas.

Lemma A.1. Let marginal values be non-decreasing and let �1 > �2. CMRA-truthful

bidding forms an ex-post equilibrium in proxy strategies only if pf2  pf1 for all feasible

type profiles.

Proof of Lemma A.1. First, suppose pf1 < pf2 and (�1, 1 � �1) is e�cient. Case 2 in the

proof of Proposition 2 shows that the auction ends at clock price pf2 with the e�cient

allocation. However, bidder 1 prefers winning 1� �2 for free over �1 for transfer pf2�1:

U1(1� �2)� 0 > U1(�1)� pf2�1,

which is equivalent to pf1 < pf2 . Second, consider type profiles so that pf1 < pf2 and
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(1 � �2,�2) is e�cient. Case 3 in the proof of Proposition 2 implies that the clock ends

at price p = (U1(�1) � U1(1 � �2))/�2 with the e�cient allocation, and bidder 1 pays

p(1� �2). Bidder 1 could have won the same share for free by submitting an additional

bid of zero for 1� �2 at clock price 0. In both cases, bidder 1 has a profitable deviation,

so CMRA-truthful bidding forms an equilibrium only if pf2  pf1 .

Lemma A.2. Let marginal values be non-decreasing and let �1 > �2. Let the bidders’

types be such that pf2 < pf1 . If bidder 2 bids CMRA-truthfully, then bidder 1 has no

incentive to bid CMRA-truthfully.

Proof of Lemma A.2. If both bidders bid CMRA-truthfully, then the auction ends at

clock price pf2 with the e�cient allocation (�1, 1� �1). Bidder 1’s total payment is pf2�1.

Bidder 1 has the following profitable deviation: Headline-demand �1 until the clock

price reaches p 2 ((U2(�2) � U2(1 � �1))/�2, p
f
2), at which point the headline demand is

dropped to 0. No further bids are made by bidder 1. Hence, B1(�1; p0) = p�1 for p0 � p.

If bidder 1 plays this strategy, the auction does not end at clock price p, because there

is no revenue-maximizing allocations (�1, y), where 0  y  1 � �1, that has received

non-negative bids from both bidders; the auction continues until pf2 .

The deviation is profitable only if the auction does indeed lead to allocation (�1, 1��1)

at clock price pf2 ; allocation (�1, 1� �1) must be revenue-maximizing:

B1(0; p
f
2)| {z }

=0

+B2(�2; p
f
2)| {z }

pf2�2

< B1(�1; p
f
2)| {z }

=p�1

+B2(1� �1; p
f
2)| {z }

=0

.

Therefore, for p such that pf2 > p > U2(�2)�U2(1��1)
�1

, the deviation does not change the

final allocation compared to truthful bidding but reduces bidder 1’s total payment from

pf2�1 to p�1.

Due to marginal utilities being strictly increasing in ✓, there is no type space (with at

least three distinct types) so that pf1 = pf2 for all type profiles. To see this, note that pfi
only depends on i’s type. Consider a type profile such that pf1 = pf2 . Changing ✓i while

keeping ✓j constant leads to pf1 < pf2 or pf1 > pf2 . In the first case, Lemma A.1 implies

that truthful bidding does not form an equilibrium. In the second case, Lemma A.2

implies that bidder 1 can profitably deviate from truthful bidding.

Proof of Theorem 2. The first observation is that ✓i � ✓j , pf (✓i) � pf (✓j). To see this,

note that pf (✓) = (U(�2; ✓) � U(1 � �2; ✓))/�2 =
R �2

1��2
u(x; ✓)dx/�2. The assumption

du/d✓ > 0 implies that pf increases in ✓. Moreover, pf (✓) < U(�2; ✓)/�2 for all feasible ✓.

Now suppose that both bidders follow the constant strategy with headline demand in

Equation (4). Bidder i wins �2 for transfer pf (✓j)�2 if ✓i � ✓j and wins 1� �2 for free if

✓i < ✓j. The proof follows similar steps as the proof of Theorem 1.
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Suppose that instead of following the constant strategy, bidder i wants to win xi with

bid Di(xi) at clock price p. As bidder j’s headline demand is �2 for any clock price below

Uj(�2)/�2, bidder j’s bid on �2 is Bj(�2; p) = min{p, Uj(�2)/�2}�2. To be part of the

revenue-maximizing allocation, the bid Di(xi) must satisfy

Di(xi) + Bj(xj; p) � Bj(�2; p),

where xi + xj  1.

Consider p < pf (✓j). As bidder j’s headline demand is �2 and bidder j places no

additional bids, bidder i faces

Bj(xj; p) =

8
<

:
�1 for 0  xj < �2

p�2 for x = �2.

Hence, the only feasible xi is xi  1 � �2. Any such xi can be won for free. The best

xi is 1 � �2. If ✓i < ✓j, then bidder i cannot do better by deviating from the constant

strategy. If ✓i � ✓j, then bidder i prefers the constant strategy as this leads to a higher

expected utility:

Ui(�2)� pf (✓j)�2 � Ui(1� �2) , pf (✓i) � pf (✓j).

Consider p 2 [pf (✓j), Uj(�2)/�2). At clock price pf (✓j), bidder j adds the additional

bid on 1 � �2, which changes the bid function at 1 � �2 to Bj(1 � �2; p) = 0. Now

the revenue-maximizing allocation can be (xi, 1 � �2) for xi  �2 if Di(xi) � Bj(�2; p).

In the best case, the inequality is binding. Hence, if Di(xi) is winning, then bidder i’s

utility is at most Ui(xi) � Bj(�2; p). The xi that maximizes the utility is xi = �2. If

✓i � ✓j, then bidder i wins �2 for pf (✓j)�2, which is at least as good as winning �2 for

price Bj(�2; p) = p�2 � pfj�2. Hence, there is no profitable deviation when bidder i is

stronger. If bidder i is weaker, then the utility of winning �2 for Bj(�2; p) is less than

winning 1� �2 for free, which can be achieved by the constant strategy. Hence, there is

also no profitable deviation if bidder i is weaker than bidder j.

Finally, consider p � Uj(�2)/�2. Bidder j bids

Bj(xj; p) =

8
>>><

>>>:

0 for xj 2 {0, 1� �2}

Uj(�2) for x = �2

�1 else.

Winning xi  �2 now becomes more expensive compared to the previous case. Bidder 1

might also win x 2 (�2,�1] at clock price p. The lowest (and only) clock price at which

this is possible is p = U2(�2)/�2. At this price, bidder 2 bids 0 on 0 so that an allocation
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in which bidder 1 wins more than �2 can involve bids by both bidders. The deviating bid

must be su�ciently high so that it is revenue-maximizing:

D1(x) + B2(0; p) � B2(�2; p) = U2(�2).

It follows that bidder 1 can win x for payment U2(�2). A strategy that leads to this

outcome is to headline-demand x until clock price p̃ = U2(�2)/x and then stop bidding.

Note that this deviation is the same as the one that proves that CMRA-truthful bidding

is not an equilibrium with non-decreasing marginal values (Theorem 1). Due to positive

marginal values and a payment that is independent of the quantity, the optimal quantity

is x = �1.

Bidder 1’s deviation payo↵ is then U1(�1)� U2(�2). The deviation is profitable if

U1(�1)� U2(�2) � U1(�2)� U2(�2) + U2(1� �2).

Due to marginal values being increasing in ✓, if the highest type of bidder 1, ✓1, has no

incentive to deviate against the lowest type of bidder 2, ✓2, then no type of bidder 1

has an incentive to deviate. It follows that condition (�) is su�cient for the profile of

constant strategies to form an ex-post equilibrium.

Moreover, condition (�) is also necessary because otherwise there are type profiles so

that bidder 1 has an incentive to deviate along the lines discussed above.

With decreasing marginal values, the e�cient allocation is interior. In contrast, the

constant strategy profile leads to allocation (�2, 1 � �2), which cannot be e�cient by

Assumption 1 for all type profiles.

If Assumption 2 holds and (�1, 1 � �1) is e�cient, then the equilibrium outcome is

ine�cient. If (1��2,�2) is e�cient, then
R �2

1��1
u2(x)dx �

R �1

1��2
u1(x)dx. As both integrals

are over the same mass, but over lower x for bidder 2, bidder 2 must have a higher ✓.

Hence, the profile of constant strategies leads to the e�cient outcome. With symmetric

caps and with non-decreasing marginal values, the outcome is identical to the outcome

under CMRA-truthful bidding and to truthful bidding in a VCG auction.

A.3 Proofs of Section 6

Proof of Theorem 3. If bidder i does not want to win 1/2 at clock price 0, then the

profile of continuation strategies forms an ex-post equilibrium in proxy strategies by

Theorem 2. Hence, the only question is whether bidder i prefers winning 1/2 for free over

the continuation payo↵ of the constant strategy profile.

Let ✓i � ✓j. Then bidder i wins �2 for transfer Uj(�2)�Uj(1� �2) by deviating from
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winning 1/2 for free in the initial clock round. The deviation payo↵ is worse as:

Ui(�2)� Ui(1/2)  U(�2; ✓i)� U(1/2; ✓i)

 U(�2; ✓j)� U(1� �2; ✓j)  Uj(�2)� Uj(1� �2).

The first and the last inequalities use that marginal values are strictly increasing in type.

The second inequality uses condition (|).

Conversely, if condition (|) does not hold, then the highest type facing the lowest

competitor’s type strictly prefers to win �2 for transfer pf (✓j)�2 over winning 1/2 for free.

Let ✓i < ✓j. Sticking to the RDR strategy gives bidder i a quantity of 1/2 for free.

The deviation of not implementing the 50-50 split leads to a payo↵ of 1 � �2 for free.

There is no incentive to deviate.

B More than two bidders

We now analyze the robustness of the previous results with respect to the number of bid-

ders n. We start by looking at CMRA-truthful bidding and non-decreasing marginal val-

ues because we know that truthful bidding is not an equilibrium with decreasing marginal

values (Proposition 3). Moreover, we restrict attention to symmetric caps because we

know that CMRA-truthful bidding is not an equilibrium with asymmetric caps, even in

the two-bidder case (Theorem 1). Let 1/n < � < 1.

With non-decreasing marginal values, there are m = d1/�e winners in the e�cient

allocation (dxe denotes the smallest integer that is larger than x). In the e�cient allo-

cation, m � 1 bidders win � and one bidder wins 1 � (m � 1)� =: x̂. The other bidders

win nothing. Wlog, let us rank the bidders according to type so that bidder 1 has the

highest and bidder n has the lowest type. Then bidder i with i < m wins � and bidder

m wins x̂; x̂ is equal to � if � = 1/m. Bidder i > m does not win anything in the e�cient

allocation.

The auction ends with the e�cient allocation when all bidders bid CMRA-truthfully.

The bidding functions Bi are convex and such that Bi(�) = min{p�, Ui(�)}. For any

lower quantity, lower types bid higher (unless they have bid zero on zero quantity). In

particular, low types bid on zero quantity or the residual x̂ at lower clock prices. On the

other hand, bidders bid true marginal values so that higher types have steeper bidding

functions. It follows that the auction ends e�ciently: Because low types bid on low

quantities earlier and revenue is maximized by assigning the quantity � to as many

bidders as possible, it cannot be that high types win zero or x̂.

Let pfi (x) denote the clock price at which bidder i bids zero on x under CMRA-truthful

39



bidding:

pfi (x) =
Ui(�)� Ui(x)

�
.

Let pF denote the clock price at which the auction ends.

When all bidders are winners in the e�cient allocation (i.e., if n = m or if 1/n <

� < 1/(n � 1)), then the clock ends at pF = pfm(x̂). This case is analogous to the

two-bidder case studied above. When n > m, then the auction does not end at pfm(x̂).

At pfm(x̂), bidder m bids 0 on x̂ but bidder m + 1 bids something strictly positive on

x̂. Hence, the e�cient allocation is not revenue-maximizing and the revenue-maximizing

allocation does not include bids by all bidders; the auction continues. At clock price

pfm+1(0) = Um+1(�)/�, bidder m+ 1 stops bidding. However, bidder m+ 1’s bid on x̂ is

still higher than bidder m’s until the clock price is

pF =
Um+1(x̂)� Um(x̂) + Um(�)

�
,

which is such that

Bm(x̂; p
F ) = Um+1(x̂).

Note that this price satisfies pF > pfm(x̂) and pF  pfm(0). Moreover, pF > pfm+1(0)

because marginal values are increasing in ✓. Importantly, bidders pay VCG prices. Bidder

m bids Um+1(x̂) on x̂, which is the externality m imposes on m+1 (and the other losing

bidders). Bidder i 2 {1, 2, . . . ,m � 1} pays pF� = Um+1(x̂) � Um(x̂) + Um(�) (which is

the externality of bidder i having a higher type so that bidder m does not win � and

bidder m+ 1 does not win x̂).

Theorem B.1. Let there be n � 2 bidders with symmetric caps � 2 (1/n, 1) and non-

decreasing marginal values. Then CMRA-truthful bidding is an e�cient ex-post equilib-

rium.

Proof. We have already argued that CMRA-truthful bidding leads to the e�cient allo-

cation. We now prove that no bidder has an incentive to deviate from truthful bidding

even if they know the other bidders’ types.

Case 1. Let n = m. As we argued above, under CMRA-truthful bidding, the auction

stops at pF = mini p
f
i (x̂) = pfm(x̂).

Suppose bidder i wants to win xi at p  pF . If xi  x̂, then this quantity can be won

for free but

Ui(xi)  Ui(x̂)  Ui(�)� p�

since p  pfi (x̂). Note that share � can only be won at pfm(x̂) (or at higher prices if

i = m). If x̂ < xi < �, then the revenue-maximizing allocation can only be such that

bidder i wins xi, n� 2 bidders win � and bidder m wins 1� xi � (n� 2)� > x̂ because

low types bid higher than high types (except that all bidders bid p� for � as long as
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p  pfn(0)). Hence, bidder i needs to bid at least Di(xi) to win xi in clock round p, where

Di(x) must satisfy

Di(xi) + Bm(1� xi � (n� 2)�) + (n� 2)� � (n� 1)p�.

The right-hand side contains the revenue when all bidders except for bidder i win �,

which is a feasible allocation but not one in which one bid by every bidder is accepted.

The inequality reduces to Di(xi) � Um(�)�Um(1�xi� (n�2)�). The optimal deviation

is such that bidder i pays the VCG price, i.e., the externality imposed on bidder m.

Expected utility is then Ui(xi) � Um(�) + Um(1 � xi � (n � 2)�), which is convex in xi

and maximized by xi = �.

Suppose bidder i wants to win xi at p > pF . Buying less than x̂ is not profitable

because this quantity can be obtained for free but it is not preferred to the outcome of

CMRA-truthful bidding by construction of the strategy. Buying � only becomes increas-

ingly costly. Winning xi 2 (x̂,�) is possible even at p  pF but not profitable.

Case 2. Let n > m. Note that a deviation by bidder i changes the outcome of at

most two other bidders; their identify depends on the deviating bidder’s.

Consider first bidder i = m. If bidder i wants to win less than x̂, then bidder m + 1

wins more; the other bidders are not a↵ected. Suppose bidder i wants to win xi less by

bidding Di(x̂�xi; p) in clock round p. This deviating bid is part of a revenue-maximizing

allocation only if

Di(x̂� xi; p) + Bm+1(xi) � Bm+1(x̂).

Bidder m+1 bidding truthfully implies that the deviating bid must be at least Um+1(x̂)�
Um+1(xi). Since this is the VCG price, bidder i has no incentive to deviate from truthful

bidding, i.e., 0 2 argmaxxi Ui(x̂�xi)�Um+1(x̂)+Um+1(xi). Suppose bidder i = m wants

to win xi more, so x̂+ xi in total. This can only be done when bidder m� 1 wins �� xi.

Then the deviating bid is part of a revenue-maximizing allocation only if

Di(x̂+ xi; p) + Bm�1(�� xi; p) � Bm�1(�; p).

The deviating bid must be at least the VCG price Um�1(�) � Um�1(� � xi); it is not

profitable to win more. Note that it cannot be the case that bidder i wins so much more

that also bidder m� 2 is a↵ected. If bidder m wins xi more that x̂, than the cap requires

x̂+ xi  �. Hence, even if bidder m wins �, bidder m� 1 wins x̂ and bidder m� 2 wins

�.

Consider bidder i > m, that is, a bidder who does not win anything if bidding CMRA-

truthfully. Such a bidder i can only win more than in the e�cient allocation by deviating.

Depending on how much bidder i wants to win, this reduces how much bidder m wins or

it can reduce what bidders m and m� 1 win. In the first case, the deviating bid must be
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at least Um(x̂)� Um(x̂� xi), where xi is the amount bidder i wants to win. Since this is

the VCG price, there is no profitable deviation; the optimal xi is 0. In the second case,

bidder m does not win anything after the deviation so that the deviating bid must be

at least Um�1(�)� Um�1(�� xi) + Um(x̂); the externality imposed on the other bidders.

None of the two possible deviations can be profitable.

Consider bidder i < m. Bidder i can only win less than in the e�cient allocation due

to the cap. Depending on how much bidder i wants to win less, there are two possible

cases. First, it can be that only bidder m wins more, and, second, that bidders m and

m+1 win more. In the first case, bidder i has to bid at least Um(�)�Um(x̂+ xi), where

xi is the amount bidder i wants to win less. Maximizing expected utility Ui(� � xi) �
Um(�) + Um(x̂ + xi) with respect to xi leads to xi = 0 due to non-decreasing marginal

values. Second, suppose bidder i wishes to win so much less that bidder m+ 1 becomes

a winner. The deviating bid must then be such that

Di(�� xi; p) + Bm(�; p) + Bm+1(x̂� �+ xi; p) � Bm(�; p) + Bm+1(x̂; p).

The deviating bid must therefore be at least Um+1(x̂) � Um+1(x̂ � � + xi). It is not

profitable for bidder i to deviate.

Finally, we check whether the constant strategy forms an equilibrium. We have already

noted that the n = m case is essentially as in in the two-bidder case. Hence, the profile

of constant strategies forms an ex-post equilibrium if n = m for decreasing and non-

decreasing marginal values (with symmetric caps). However, if n > m, then bidder m+1

has a profitable deviation. Instead of submitting a single bid on x̂ with value 0, it is

optimal to bid ✏ on x̂. Doing so guarantees that bidder m + 1 rather than bidder m

wins x̂. Hence, the profile of constant strategies does not form an ex-post equilibrium if

n > m.
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ONLINE APPENDIX

The Combinatorial Multi-Round Ascending Auction

Bernhard Kasberger and Alexander Teytelboym

OA.1 Details on the 2019 Danish auction

Table OA.1 summarizes the supply in the 2019 auction and the auction outcome. The

licenses in the 900 MHz band were not allocated through a CMRA. In the 900 MHz band,

there were 2x30 MHz paired frequencies available. These licenses came with a coverage

obligation. We call the lots in the 900 MHz band A lots.

The supply in the CMRA was six 2x5 MHz blocks (B lots) of paired frequencies in

the 700 MHz band, four 5 MHz blocks of unpaired frequencies in the 700 MHz band (D

lots), one block 40 MHz block in the 2.3 GHz band with a coverage obligation (E lot),

and six 10 MHz blocks in the 2.3 GHz band (F lots).

There was no reserve price on the lots with a coverage obligation. The reserve price

per B lot was DKK 95 million. The reserve price per D lot was DKK 25 million. The

reserve price per F lot was DKK 25 million.

The following spectrum caps were in place. Each bidder was allowed to win at most

one block in the 900 MHz band. Across the paired blocks in the 700 MHz and 900 MHz

bands, each bidder was allowed to win at most four lots. Bidders were not allowed to

win more than 60 MHz in the 2.3 GHz band. There was no restriction on the number of

blocks a bidder could win in the unpaired 700 MHz band.

The auction outcome was as follows. Bidder A paid DKK 485.2 million for one A lot

and two B lots. Bidder B paid DKK 1620 million for one A lot, three B lots, four D lots,

and six F lots. Bidder C paid DKK 107.6 million for one A lot and one B lot. Hence,

the 40 MHz lot in the 2.3 GHz spectrum with the coverage obligation was unsold. Note

that bidder B received the maximum quantity permitted by the spectrum caps, which is

consistent with the CMRA-truthful and constant strategies. For this reason, it is likely

that bidder B won with their headline demand.

We now examine whether the bidders paid linear prices. Recall this would suggest

that only headline demands were winning. As the A lots were traded at a reserve price of

0, bidder C paid DKK 107.6 million for a single B lot. Bidder A paid DKK 485.2 million

for two B lots. As bidder A paid more than four times bidder C’s payment, we take this

as evidence that at least one additional bid was winning. In particular, we speculate that

bidder C won with an additional bid. Winning a small package at low cost is consistent

with the constant strategy and with CMRA-truthful bidding.

While we think it is likely that bidder B won with a headline demand, it is not clear
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Lot Description Supply R Bidder A Bidder B Bidder C

CMRA

B 2x5 MHz in the 700 MHz band 6 95 2 3 1
D 5 MHz in the 700 MHz band 4 25 4
E 40 MHz in the 2.3 GHz band 1 0
F 10 MHz in the 2.3 GHz band 6 25 6

Non-competitive

A 2x10 MHz in the 900 MHz band 3 0 1 1 1

Expenditure

In million DKK 820 485 1620 107.6

Table OA.1: Supply and auction outcome in the 2019 Danish spectrum auction
Notes: R = reserve price in million DKK; the E lot came with a coverage obligation

whether bidder A won with a headline or an additional bid. Bidder B paid DKK 1135

million more than bidder A for also winning another B lot, the four D lots, and the six F

lots. If bidder B won the headline demand, then 1135 = pB +4pD +6pF . Suppose bidder

A won the headline demand, implying pB = 485.2/2 = 242.6 and 892.4 = 4pD + 6pF .

Moreover, assume that pD = pF as the D and F lots have the same reserve price. Linear

prices then imply that pD = pF = 89.24, which is not implausible. Conversely, if bidder

B won their headline demand and final prices for D and F were, say, about 65, then this

would imply pB = 485. In particular, bidder A would have bought two B lots with an

additional bid at half price. Hence, we cannot rule out the possibilities that bidder A

won their headline demand or with an additional bid. Finally, we do not see any signs

that the auctioned ended as in the risk-free demand reduction equilibrium.

OA.2 Details on the 2021 Danish auction

The process was similar to the two previous auctions. Bidders first had the chance to

obtain 2x10 MHz in the 2.1 GHz band with a coverage obligation for a reserve price of 0

(2.1-D lot). All bidders bought such a license. Table OA.2 summarizes the supply and

outcome.

There were two subsequent CMRAs. In the first CMRA, there were ten lots in the

1500 MHz band available: a single 25 MHz (lot 1.5-B) for a reserve price of DKK 10

million, eight 5 MHz lot (1.5-M) for a reserve price of DKK 10 million each, and another

single 25 MHz block (1.5-T) for a reserve price of DKK 10 million. In the 2.1 GHz

spectrum, there were six 2x5 MHz blocks (2.1-U) available for a reserve price of DDK 25

million each. In the 2.3 GHz band, there were two lots for 20 MHz available for a reserve

price of DDK 25 million. In the 3.5 GHz band there were three categories of lots. First,

there were three lots in the 3.5 GHz band available (3.5-D). The reserve price for such a

lot was DDK 75 million. One such lot corresponds to 80 MHz in the 3.5 GHz spectrum
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and 400 MHz in the 26 GHz spectrum. Second, there was a single lot of 60 MHz (3.5-P)

for a reserve price of DDK 25 million in the 3.5 GHz band with a leasing obligation.

Third, there were nine 10 MHz lots (3.5-U) for a reserve price of DDK 25 million. The

second CMRA was for the remaining lots in the 26 GHz band. In total there were 2850

MHz unpaired frequencies in the 26 GHz band. After subtracting the 1200 MHz sold in

the first auction through the 3.5-D lots, there were 1650 MHz available (in lots of 200

MHz and 250 MHz) in the second CMRA. The reserve price was about DKK 5 million

per lot.

Each of the three bidders won a 2x10 MHz in the 2.1 GHz band with a coverage

obligation for a reserve price of 0, two 2x5 MHz lots in the 2.1 GHz band, and a 3.5-D

lot (80 MHz in the 3.5 GHz band and 400 MHz in the 26 GHz band).

In addition, bidder A won 40 MHz in the 3.5 GHz band (four 3.5-U lots) in the first

CMRA and 600 MHz in the 26 GHz band in the second CMRA. Bidder A’s total payment

was DKK 540,525,000.

In addition to the above, bidder B won the 1.5-B lot, four 1.5-M lots, the two lots

in the 2.3 GHz band, and 50 MHz in the 3.5 GHz band (five 3.5-U lots). In the second

CMRA, bidder B won 850 MHz in the 26 GHz band. Bidder B’s total payment was DKK

794,685,000.

In addition to the above, bidder C won the 1.5-T lot, four 1.5-M lots, and the 60 MHz

in the 3.5 GHz spectrum with the leasing obligation. In the second CMRA, bidder C

won 200 MHz in the 26 GHz band. Bidder C’s total payment was DKK 740,976,000.

We first look at the di↵erences between bidders B and C. Bidder B won the two 2.3-U

lots in the 2.3 GHz band (40 MHz in total), 10 MHz less in the 3.5 GHz band (but

without the leasing obligation), and 650 MHz more in the 26 GHz band. Bidder B paid

DKK 53,709,000 more than bidder C. Bidder B’s final assignment seems to dominate

bidder C’s and cost only DKK 54 million more. Compare this number to the reserve

price of DKK 100 million for the 2.3 GHz band alone. Hence, we suspect that bidder

B used additional bids to win the large package (as under CMRA-truthful bidding with

decreasing marginal values).

Next, we compare the outcomes of bidders A and B. Bidder B paid DKK 254 million

more than bidder A and got the additional 45 MHz in the 1500 MHz band, 40 MHz in

the 2300 MHz band, 10 MHz in the 3.5 GHz band, and 250 MHz in the 26 GHz band.

The reserve price for the additional lots won by bidder B is DKK 180 million. Hence,

bidder B paid DKK 74 million in excess of the reserve price.

Comparing bidders A and C, bidder C won 45 MHz in the 1500 MHz band while

bidder A did not win any lot in this category. Bidder C won 20 MHz more in the 3.5

GHz band (but subject to the leasing obligation), and 400 MHz less in the 26 GHz band.

Bidder A paid DKK 200 million less, however. The reserve price of the 45 MHz in the

1500 MHz band was DDK 50 million.
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Lot Description Supply R Bidder A Bidder B Bidder C

CMRA

1.5-B 25 MHz in the 1500 MHz band (bottom) 1 10 1
1.5-M 5 MHz in the 1500 MHz band 8 10 4 4
1.5-T 25 MHz in the 1500 MHz band (top) 1 10 1
2.1-U 2x5 MHz in the 2.1 GHz band 6 25 2 2 2
2.3-U 20 MHz in the 2.3 GHz band 2 50 2
3.5-D 80 MHz in 3.5 GHz + 400 MHz in 26 GHz 3 75 1 1 1
3.5-P 60 MHz in 3.5 GHz (leasing obligation) 1 25 1
3.5-U 10 MHz in the 3.5 GHz band 9 25 4 5
26-U 200 MHz/250 MHz in the 26 GHz band 8 5 3 4 1

Non-competitive

2.1-D 2x10 MHz in the 2.1 GHz band 3 0 1 1 1

Expenditure

In million DKK 865 541 795 741

Table OA.2: Supply and auction outcome in the 2021 Danish spectrum auction
Note: R = reserve price in million DKK

We conclude that it is likely that bidder B won with an additional bid. Due to the

many prices, we cannot say whether bidders A and B won their headline demands or with

additional bids. There is, however, no evidence for risk-free demand reduction.
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